from typing import List, NamedTuple import itertools import numpy as np from mlagents.trainers.buffer import ( AgentBuffer, AgentBufferField, ObservationKeyPrefix, AgentBufferKey, BufferKey, ) from mlagents_envs.base_env import ActionTuple from mlagents.trainers.torch.action_log_probs import LogProbsTuple class GroupmateStatus(NamedTuple): """ Stores data related to an agent's teammate. """ obs: List[np.ndarray] reward: float action: ActionTuple done: bool class AgentExperience(NamedTuple): obs: List[np.ndarray] reward: float done: bool action: ActionTuple action_probs: LogProbsTuple action_mask: np.ndarray prev_action: np.ndarray interrupted: bool memory: np.ndarray group_status: List[GroupmateStatus] group_reward: float class ObsUtil: @staticmethod def get_name_at(index: int) -> AgentBufferKey: """ returns the name of the observation given the index of the observation """ return ObservationKeyPrefix.OBSERVATION, index @staticmethod def get_name_at_next(index: int) -> AgentBufferKey: """ returns the name of the next observation given the index of the observation """ return ObservationKeyPrefix.NEXT_OBSERVATION, index @staticmethod def from_buffer(batch: AgentBuffer, num_obs: int) -> List[np.array]: """ Creates the list of observations from an AgentBuffer """ result: List[np.array] = [] for i in range(num_obs): result.append(batch[ObsUtil.get_name_at(i)]) return result @staticmethod def from_buffer_next(batch: AgentBuffer, num_obs: int) -> List[np.array]: """ Creates the list of next observations from an AgentBuffer """ result = [] for i in range(num_obs): result.append(batch[ObsUtil.get_name_at_next(i)]) return result class GroupObsUtil: @staticmethod def get_name_at(index: int) -> AgentBufferKey: """ returns the name of the observation given the index of the observation """ return ObservationKeyPrefix.GROUP_OBSERVATION, index @staticmethod def get_name_at_next(index: int) -> AgentBufferKey: """ returns the name of the next team observation given the index of the observation """ return ObservationKeyPrefix.NEXT_GROUP_OBSERVATION, index @staticmethod def _padded_time_to_batch( agent_buffer_field: AgentBufferField, ) -> List[np.ndarray]: """ Convert an AgentBufferField of List of obs, where one of the dimension is time and the other is number (e.g. in the case of a variable number of critic observations) to a List of obs, where time is in the batch dimension of the obs, and the List is the variable number of agents. For cases where there are varying number of agents, pad the non-existent agents with NaN. """ # Find the first observation. This should be USUALLY O(1) obs_shape = None for _group_obs in agent_buffer_field: if _group_obs: obs_shape = _group_obs[0].shape break # If there were no critic obs at all if obs_shape is None: return [] new_list = list( map( lambda x: np.asanyarray(x), itertools.zip_longest( *agent_buffer_field, fillvalue=np.full(obs_shape, np.nan) ), ) ) return new_list @staticmethod def _transpose_list_of_lists( list_list: List[List[np.ndarray]], ) -> List[List[np.ndarray]]: return list(map(list, zip(*list_list))) @staticmethod def from_buffer(batch: AgentBuffer, num_obs: int) -> List[np.array]: """ Creates the list of observations from an AgentBuffer """ separated_obs: List[np.array] = [] for i in range(num_obs): separated_obs.append( GroupObsUtil._padded_time_to_batch(batch[GroupObsUtil.get_name_at(i)]) ) # separated_obs contains a List(num_obs) of Lists(num_agents), we want to flip # that and get a List(num_agents) of Lists(num_obs) result = GroupObsUtil._transpose_list_of_lists(separated_obs) return result @staticmethod def from_buffer_next(batch: AgentBuffer, num_obs: int) -> List[np.array]: """ Creates the list of observations from an AgentBuffer """ separated_obs: List[np.array] = [] for i in range(num_obs): separated_obs.append( GroupObsUtil._padded_time_to_batch( batch[GroupObsUtil.get_name_at_next(i)] ) ) # separated_obs contains a List(num_obs) of Lists(num_agents), we want to flip # that and get a List(num_agents) of Lists(num_obs) result = GroupObsUtil._transpose_list_of_lists(separated_obs) return result class Trajectory(NamedTuple): steps: List[AgentExperience] next_obs: List[ np.ndarray ] # Observation following the trajectory, for bootstrapping next_group_obs: List[List[np.ndarray]] agent_id: str behavior_id: str def to_agentbuffer(self) -> AgentBuffer: """ Converts a Trajectory to an AgentBuffer :param trajectory: A Trajectory :returns: AgentBuffer. Note that the length of the AgentBuffer will be one less than the trajectory, as the next observation need to be populated from the last step of the trajectory. """ agent_buffer_trajectory = AgentBuffer() obs = self.steps[0].obs for step, exp in enumerate(self.steps): is_last_step = step == len(self.steps) - 1 if not is_last_step: next_obs = self.steps[step + 1].obs else: next_obs = self.next_obs num_obs = len(obs) for i in range(num_obs): agent_buffer_trajectory[ObsUtil.get_name_at(i)].append(obs[i]) agent_buffer_trajectory[ObsUtil.get_name_at_next(i)].append(next_obs[i]) # Take care of teammate obs and actions teammate_continuous_actions, teammate_discrete_actions, teammate_rewards = ( [], [], [], ) for group_status in exp.group_status: teammate_rewards.append(group_status.reward) teammate_continuous_actions.append(group_status.action.continuous) teammate_discrete_actions.append(group_status.action.discrete) # Team actions agent_buffer_trajectory[BufferKey.GROUP_CONTINUOUS_ACTION].append( teammate_continuous_actions ) agent_buffer_trajectory[BufferKey.GROUP_DISCRETE_ACTION].append( teammate_discrete_actions ) agent_buffer_trajectory[BufferKey.GROUPMATE_REWARDS].append( teammate_rewards ) agent_buffer_trajectory[BufferKey.GROUP_REWARD].append(exp.group_reward) # Next actions teammate_cont_next_actions = [] teammate_disc_next_actions = [] if not is_last_step: next_exp = self.steps[step + 1] for group_status in next_exp.group_status: teammate_cont_next_actions.append(group_status.action.continuous) teammate_disc_next_actions.append(group_status.action.discrete) else: for group_status in exp.group_status: teammate_cont_next_actions.append(group_status.action.continuous) teammate_disc_next_actions.append(group_status.action.discrete) agent_buffer_trajectory[BufferKey.GROUP_NEXT_CONT_ACTION].append( teammate_cont_next_actions ) agent_buffer_trajectory[BufferKey.GROUP_NEXT_DISC_ACTION].append( teammate_disc_next_actions ) for i in range(num_obs): ith_group_obs = [] for _group_status in exp.group_status: # Assume teammates have same obs space ith_group_obs.append(_group_status.obs[i]) agent_buffer_trajectory[GroupObsUtil.get_name_at(i)].append( ith_group_obs ) ith_group_obs_next = [] if is_last_step: for _obs in self.next_group_obs: ith_group_obs_next.append(_obs[i]) else: next_group_status = self.steps[step + 1].group_status for _group_status in next_group_status: # Assume teammates have same obs space ith_group_obs_next.append(_group_status.obs[i]) agent_buffer_trajectory[GroupObsUtil.get_name_at_next(i)].append( ith_group_obs_next ) if exp.memory is not None: agent_buffer_trajectory[BufferKey.MEMORY].append(exp.memory) agent_buffer_trajectory[BufferKey.MASKS].append(1.0) agent_buffer_trajectory[BufferKey.DONE].append(exp.done) agent_buffer_trajectory[BufferKey.GROUP_DONES].append( [_status.done for _status in exp.group_status] ) # Adds the log prob and action of continuous/discrete separately agent_buffer_trajectory[BufferKey.CONTINUOUS_ACTION].append( exp.action.continuous ) agent_buffer_trajectory[BufferKey.DISCRETE_ACTION].append( exp.action.discrete ) cont_next_actions = np.zeros_like(exp.action.continuous) disc_next_actions = np.zeros_like(exp.action.discrete) if not is_last_step: next_action = self.steps[step + 1].action cont_next_actions = next_action.continuous disc_next_actions = next_action.discrete agent_buffer_trajectory[BufferKey.NEXT_CONT_ACTION].append( cont_next_actions ) agent_buffer_trajectory[BufferKey.NEXT_DISC_ACTION].append( disc_next_actions ) agent_buffer_trajectory[BufferKey.CONTINUOUS_LOG_PROBS].append( exp.action_probs.continuous ) agent_buffer_trajectory[BufferKey.DISCRETE_LOG_PROBS].append( exp.action_probs.discrete ) # Store action masks if necessary. Note that 1 means active, while # in AgentExperience False means active. if exp.action_mask is not None: mask = 1 - np.concatenate(exp.action_mask) agent_buffer_trajectory[BufferKey.ACTION_MASK].append( mask, padding_value=1 ) else: # This should never be needed unless the environment somehow doesn't supply the # action mask in a discrete space. action_shape = exp.action.discrete.shape agent_buffer_trajectory[BufferKey.ACTION_MASK].append( np.ones(action_shape, dtype=np.float32), padding_value=1 ) agent_buffer_trajectory[BufferKey.PREV_ACTION].append(exp.prev_action) agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS].append(exp.reward) # Store the next visual obs as the current obs = next_obs return agent_buffer_trajectory @property def done_reached(self) -> bool: """ Returns true if trajectory is terminated with a Done. """ return self.steps[-1].done @property def teammate_dones_reached(self) -> bool: """ Returns true if all teammates are done at the end of the trajectory. Combine with done_reached to check if the whole team is done. """ return all(_status.done for _status in self.steps[-1].group_status) @property def interrupted(self) -> bool: """ Returns true if trajectory was terminated because max steps was reached. """ return self.steps[-1].interrupted