import numpy as np from mlagents.trainers.buffer import ( AgentBuffer, AgentBufferField, BufferKey, ObservationKeyPrefix, RewardSignalKeyPrefix, ) from mlagents.trainers.trajectory import ObsUtil def assert_array(a, b): assert a.shape == b.shape la = list(a.flatten()) lb = list(b.flatten()) for i in range(len(la)): assert la[i] == lb[i] def construct_fake_buffer(fake_agent_id): b = AgentBuffer() for step in range(9): b[ObsUtil.get_name_at(0)].append( np.array( [ 100 * fake_agent_id + 10 * step + 1, 100 * fake_agent_id + 10 * step + 2, 100 * fake_agent_id + 10 * step + 3, ], dtype=np.float32, ) ) b[BufferKey.CONTINUOUS_ACTION].append( np.array( [ 100 * fake_agent_id + 10 * step + 4, 100 * fake_agent_id + 10 * step + 5, ], dtype=np.float32, ) ) return b def test_buffer(): agent_1_buffer = construct_fake_buffer(1) agent_2_buffer = construct_fake_buffer(2) agent_3_buffer = construct_fake_buffer(3) a = agent_1_buffer[ObsUtil.get_name_at(0)].get_batch( batch_size=2, training_length=1, sequential=True ) assert_array( np.array(a), np.array([[171, 172, 173], [181, 182, 183]], dtype=np.float32) ) a = agent_2_buffer[ObsUtil.get_name_at(0)].get_batch( batch_size=2, training_length=3, sequential=True ) assert_array( np.array(a), np.array( [ [231, 232, 233], [241, 242, 243], [251, 252, 253], [261, 262, 263], [271, 272, 273], [281, 282, 283], ], dtype=np.float32, ), ) a = agent_2_buffer[ObsUtil.get_name_at(0)].get_batch( batch_size=2, training_length=3, sequential=False ) assert_array( np.array(a), np.array( [ [251, 252, 253], [261, 262, 263], [271, 272, 273], [261, 262, 263], [271, 272, 273], [281, 282, 283], ] ), ) agent_1_buffer.reset_agent() assert agent_1_buffer.num_experiences == 0 update_buffer = AgentBuffer() agent_2_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) agent_3_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) assert len(update_buffer[BufferKey.CONTINUOUS_ACTION]) == 20 assert np.array(update_buffer[BufferKey.CONTINUOUS_ACTION]).shape == (20, 2) c = update_buffer.make_mini_batch(start=0, end=1) assert c.keys() == update_buffer.keys() assert np.array(c[BufferKey.CONTINUOUS_ACTION]).shape == (1, 2) def fakerandint(values): return 19 def test_buffer_sample(): agent_1_buffer = construct_fake_buffer(1) agent_2_buffer = construct_fake_buffer(2) update_buffer = AgentBuffer() agent_1_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) agent_2_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) # Test non-LSTM mb = update_buffer.sample_mini_batch(batch_size=4, sequence_length=1) assert mb.keys() == update_buffer.keys() assert np.array(mb[BufferKey.CONTINUOUS_ACTION]).shape == (4, 2) # Test LSTM # We need to check if we ever get a breaking start - this will maximize the probability mb = update_buffer.sample_mini_batch(batch_size=20, sequence_length=19) assert mb.keys() == update_buffer.keys() # Should only return one sequence assert np.array(mb[BufferKey.CONTINUOUS_ACTION]).shape == (19, 2) def test_num_experiences(): agent_1_buffer = construct_fake_buffer(1) agent_2_buffer = construct_fake_buffer(2) update_buffer = AgentBuffer() assert len(update_buffer[BufferKey.CONTINUOUS_ACTION]) == 0 assert update_buffer.num_experiences == 0 agent_1_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) agent_2_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) assert len(update_buffer[BufferKey.CONTINUOUS_ACTION]) == 20 assert update_buffer.num_experiences == 20 def test_buffer_truncate(): agent_1_buffer = construct_fake_buffer(1) agent_2_buffer = construct_fake_buffer(2) update_buffer = AgentBuffer() agent_1_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) agent_2_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) # Test non-LSTM update_buffer.truncate(2) assert update_buffer.num_experiences == 2 agent_1_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) agent_2_buffer.resequence_and_append( update_buffer, batch_size=None, training_length=2 ) # Test LSTM, truncate should be some multiple of sequence_length update_buffer.truncate(4, sequence_length=3) assert update_buffer.num_experiences == 3 for buffer_field in update_buffer.values(): assert isinstance(buffer_field, AgentBufferField) def test_key_encode_decode(): keys = ( list(BufferKey) + [(k, 42) for k in ObservationKeyPrefix] + [(k, "gail") for k in RewardSignalKeyPrefix] ) for k in keys: assert k == AgentBuffer._decode_key(AgentBuffer._encode_key(k)) def test_buffer_save_load(): original = construct_fake_buffer(3) import io write_buffer = io.BytesIO() original.save_to_file(write_buffer) loaded = AgentBuffer() loaded.load_from_file(write_buffer) assert len(original) == len(loaded) for k in original.keys(): assert np.allclose(original[k], loaded[k])