from typing import Any, Dict, List, Optional, Tuple, Callable import numpy as np from distutils.version import LooseVersion from mlagents_envs.timers import timed from mlagents.tf_utils import tf from mlagents import tf_utils from mlagents_envs.exception import UnityException from mlagents_envs.base_env import BehaviorSpec from mlagents_envs.logging_util import get_logger from mlagents.trainers.policy import Policy from mlagents.trainers.action_info import ActionInfo from mlagents.trainers.trajectory import SplitObservations from mlagents.trainers.behavior_id_utils import get_global_agent_id from mlagents_envs.base_env import DecisionSteps from mlagents.trainers.tf.models import ModelUtils from mlagents.trainers.settings import TrainerSettings, EncoderType from mlagents.trainers import __version__ from mlagents.trainers.tf.distributions import ( GaussianDistribution, MultiCategoricalDistribution, ) from mlagents.tf_utils.globals import get_rank logger = get_logger(__name__) # This is the version number of the inputs and outputs of the model, and # determines compatibility with inference in Barracuda. MODEL_FORMAT_VERSION = 2 EPSILON = 1e-6 # Small value to avoid divide by zero class UnityPolicyException(UnityException): """ Related to errors with the Trainer. """ pass class TFPolicy(Policy): """ Contains a learning model, and the necessary functions to save/load models and create the input placeholders. """ # Callback function used at the start of training to synchronize weights. # By default, this nothing. # If this needs to be used, it should be done from outside ml-agents. broadcast_global_variables: Callable[[int], None] = lambda root_rank: None def __init__( self, seed: int, behavior_spec: BehaviorSpec, trainer_settings: TrainerSettings, tanh_squash: bool = False, reparameterize: bool = False, condition_sigma_on_obs: bool = True, create_tf_graph: bool = True, ): """ Initialized the policy. :param seed: Random seed to use for TensorFlow. :param brain: The corresponding Brain for this policy. :param trainer_settings: The trainer parameters. """ super().__init__( seed, behavior_spec, trainer_settings, tanh_squash, reparameterize, condition_sigma_on_obs, ) # for ghost trainer save/load snapshots self.assign_phs: List[tf.Tensor] = [] self.assign_ops: List[tf.Operation] = [] self.update_dict: Dict[str, tf.Tensor] = {} self.inference_dict: Dict[str, tf.Tensor] = {} self.first_normalization_update: bool = False self.graph = tf.Graph() self.sess = tf.Session( config=tf_utils.generate_session_config(), graph=self.graph ) self._initialize_tensorflow_references() self.grads = None self.update_batch: Optional[tf.Operation] = None self.trainable_variables: List[tf.Variable] = [] self.rank = get_rank() if create_tf_graph: self.create_tf_graph() def get_trainable_variables(self) -> List[tf.Variable]: """ Returns a List of the trainable variables in this policy. if create_tf_graph hasn't been called, returns empty list. """ return self.trainable_variables def create_tf_graph(self) -> None: """ Builds the tensorflow graph needed for this policy. """ with self.graph.as_default(): tf.set_random_seed(self.seed) _vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) if len(_vars) > 0: # We assume the first thing created in the graph is the Policy. If # already populated, don't create more tensors. return self.create_input_placeholders() encoded = self._create_encoder( self.visual_in, self.processed_vector_in, self.h_size, self.num_layers, self.vis_encode_type, ) if self.use_continuous_act: self._create_cc_actor( encoded, self.tanh_squash, self.reparameterize, self.condition_sigma_on_obs, ) else: self._create_dc_actor(encoded) self.trainable_variables = tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope="policy" ) self.trainable_variables += tf.get_collection( tf.GraphKeys.TRAINABLE_VARIABLES, scope="lstm" ) # LSTMs need to be root scope for Barracuda export self.inference_dict = { "action": self.output, "log_probs": self.all_log_probs, "entropy": self.entropy, } if self.use_continuous_act: self.inference_dict["pre_action"] = self.output_pre if self.use_recurrent: self.inference_dict["memory_out"] = self.memory_out # We do an initialize to make the Policy usable out of the box. If an optimizer is needed, # it will re-load the full graph self.initialize() # Create assignment ops for Ghost Trainer self.init_load_weights() def _create_encoder( self, visual_in: List[tf.Tensor], vector_in: tf.Tensor, h_size: int, num_layers: int, vis_encode_type: EncoderType, ) -> tf.Tensor: """ Creates an encoder for visual and vector observations. :param h_size: Size of hidden linear layers. :param num_layers: Number of hidden linear layers. :param vis_encode_type: Type of visual encoder to use if visual input. :return: The hidden layer (tf.Tensor) after the encoder. """ with tf.variable_scope("policy"): encoded = ModelUtils.create_observation_streams( self.visual_in, self.processed_vector_in, 1, h_size, num_layers, vis_encode_type, )[0] return encoded @staticmethod def _convert_version_string(version_string: str) -> Tuple[int, ...]: """ Converts the version string into a Tuple of ints (major_ver, minor_ver, patch_ver). :param version_string: The semantic-versioned version string (X.Y.Z). :return: A Tuple containing (major_ver, minor_ver, patch_ver). """ ver = LooseVersion(version_string) return tuple(map(int, ver.version[0:3])) def initialize(self): with self.graph.as_default(): init = tf.global_variables_initializer() self.sess.run(init) def get_weights(self): with self.graph.as_default(): _vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) values = [v.eval(session=self.sess) for v in _vars] return values def init_load_weights(self): with self.graph.as_default(): _vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) values = [v.eval(session=self.sess) for v in _vars] for var, value in zip(_vars, values): assign_ph = tf.placeholder(var.dtype, shape=value.shape) self.assign_phs.append(assign_ph) self.assign_ops.append(tf.assign(var, assign_ph)) def load_weights(self, values): if len(self.assign_ops) == 0: logger.warning( "Calling load_weights in tf_policy but assign_ops is empty. Did you forget to call init_load_weights?" ) with self.graph.as_default(): feed_dict = {} for assign_ph, value in zip(self.assign_phs, values): feed_dict[assign_ph] = value self.sess.run(self.assign_ops, feed_dict=feed_dict) @timed def evaluate( self, decision_requests: DecisionSteps, global_agent_ids: List[str] ) -> Dict[str, Any]: """ Evaluates policy for the agent experiences provided. :param decision_requests: DecisionSteps object containing inputs. :param global_agent_ids: The global (with worker ID) agent ids of the data in the batched_step_result. :return: Outputs from network as defined by self.inference_dict. """ feed_dict = { self.batch_size_ph: len(decision_requests), self.sequence_length_ph: 1, } if self.use_recurrent: if not self.use_continuous_act: feed_dict[self.prev_action] = self.retrieve_previous_action( global_agent_ids )["discrete_action"] feed_dict[self.memory_in] = self.retrieve_memories(global_agent_ids) feed_dict = self.fill_eval_dict(feed_dict, decision_requests) run_out = self._execute_model(feed_dict, self.inference_dict) return run_out def get_action( self, decision_requests: DecisionSteps, worker_id: int = 0 ) -> ActionInfo: """ Decides actions given observations information, and takes them in environment. :param decision_requests: A dictionary of brain names and DecisionSteps from environment. :param worker_id: In parallel environment training, the unique id of the environment worker that the DecisionSteps came from. Used to construct a globally unique id for each agent. :return: an ActionInfo containing action, memories, values and an object to be passed to add experiences """ if len(decision_requests) == 0: return ActionInfo.empty() global_agent_ids = [ get_global_agent_id(worker_id, int(agent_id)) for agent_id in decision_requests.agent_id ] # For 1-D array, the iterator order is correct. run_out = self.evaluate( # pylint: disable=assignment-from-no-return decision_requests, global_agent_ids ) self.save_memories(global_agent_ids, run_out.get("memory_out")) # For Compatibility with buffer changes for hybrid action support run_out["log_probs"] = {"action_probs": run_out["log_probs"]} if self.behavior_spec.action_spec.is_continuous(): run_out["action"] = {"continuous_action": run_out["action"]} else: run_out["action"] = {"discrete_action": run_out["action"]} return ActionInfo( action=run_out.get("action"), value=run_out.get("value"), outputs=run_out, agent_ids=decision_requests.agent_id, ) def update(self, mini_batch, num_sequences): """ Performs update of the policy. :param num_sequences: Number of experience trajectories in batch. :param mini_batch: Batch of experiences. :return: Results of update. """ raise UnityPolicyException("The update function was not implemented.") def _execute_model(self, feed_dict, out_dict): """ Executes model. :param feed_dict: Input dictionary mapping nodes to input data. :param out_dict: Output dictionary mapping names to nodes. :return: Dictionary mapping names to input data. """ network_out = self.sess.run(list(out_dict.values()), feed_dict=feed_dict) run_out = dict(zip(list(out_dict.keys()), network_out)) return run_out def fill_eval_dict(self, feed_dict, batched_step_result): vec_vis_obs = SplitObservations.from_observations(batched_step_result.obs) for i, _ in enumerate(vec_vis_obs.visual_observations): feed_dict[self.visual_in[i]] = vec_vis_obs.visual_observations[i] if self.use_vec_obs: feed_dict[self.vector_in] = vec_vis_obs.vector_observations if not self.use_continuous_act: mask = np.ones( ( len(batched_step_result), sum(self.behavior_spec.action_spec.discrete_branches), ), dtype=np.float32, ) if batched_step_result.action_mask is not None: mask = 1 - np.concatenate(batched_step_result.action_mask, axis=1) feed_dict[self.action_masks] = mask return feed_dict def get_current_step(self): """ Gets current model step. :return: current model step. """ step = self.sess.run(self.global_step) return step def set_step(self, step: int) -> int: """ Sets current model step to step without creating additional ops. :param step: Step to set the current model step to. :return: The step the model was set to. """ current_step = self.get_current_step() # Increment a positive or negative number of steps. return self.increment_step(step - current_step) def increment_step(self, n_steps): """ Increments model step. """ out_dict = { "global_step": self.global_step, "increment_step": self.increment_step_op, } feed_dict = {self.steps_to_increment: n_steps} return self.sess.run(out_dict, feed_dict=feed_dict)["global_step"] def get_inference_vars(self): """ :return:list of inference var names """ return list(self.inference_dict.keys()) def get_update_vars(self): """ :return:list of update var names """ return list(self.update_dict.keys()) def update_normalization(self, vector_obs: np.ndarray) -> None: """ If this policy normalizes vector observations, this will update the norm values in the graph. :param vector_obs: The vector observations to add to the running estimate of the distribution. """ if self.use_vec_obs and self.normalize: if self.first_normalization_update: self.sess.run( self.init_normalization_op, feed_dict={self.vector_in: vector_obs} ) self.first_normalization_update = False else: self.sess.run( self.update_normalization_op, feed_dict={self.vector_in: vector_obs} ) @property def use_vis_obs(self): return self.vis_obs_size > 0 @property def use_vec_obs(self): return self.vec_obs_size > 0 def _initialize_tensorflow_references(self): self.value_heads: Dict[str, tf.Tensor] = {} self.normalization_steps: Optional[tf.Variable] = None self.running_mean: Optional[tf.Variable] = None self.running_variance: Optional[tf.Variable] = None self.init_normalization_op: Optional[tf.Operation] = None self.update_normalization_op: Optional[tf.Operation] = None self.value: Optional[tf.Tensor] = None self.all_log_probs: tf.Tensor = None self.total_log_probs: Optional[tf.Tensor] = None self.entropy: Optional[tf.Tensor] = None self.output_pre: Optional[tf.Tensor] = None self.output: Optional[tf.Tensor] = None self.selected_actions: tf.Tensor = None self.action_masks: Optional[tf.Tensor] = None self.prev_action: Optional[tf.Tensor] = None self.memory_in: Optional[tf.Tensor] = None self.memory_out: Optional[tf.Tensor] = None self.version_tensors: Optional[Tuple[tf.Tensor, tf.Tensor, tf.Tensor]] = None def create_input_placeholders(self): with self.graph.as_default(): ( self.global_step, self.increment_step_op, self.steps_to_increment, ) = ModelUtils.create_global_steps() self.vector_in, self.visual_in = ModelUtils.create_input_placeholders( self.behavior_spec.observation_shapes ) if self.normalize: self.first_normalization_update = True normalization_tensors = ModelUtils.create_normalizer(self.vector_in) self.update_normalization_op = normalization_tensors.update_op self.init_normalization_op = normalization_tensors.init_op self.normalization_steps = normalization_tensors.steps self.running_mean = normalization_tensors.running_mean self.running_variance = normalization_tensors.running_variance self.processed_vector_in = ModelUtils.normalize_vector_obs( self.vector_in, self.running_mean, self.running_variance, self.normalization_steps, ) else: self.processed_vector_in = self.vector_in self.update_normalization_op = None self.batch_size_ph = tf.placeholder( shape=None, dtype=tf.int32, name="batch_size" ) self.sequence_length_ph = tf.placeholder( shape=None, dtype=tf.int32, name="sequence_length" ) self.mask_input = tf.placeholder( shape=[None], dtype=tf.float32, name="masks" ) # Only needed for PPO, but needed for BC module self.epsilon = tf.placeholder( shape=[None, self.act_size[0]], dtype=tf.float32, name="epsilon" ) self.mask = tf.cast(self.mask_input, tf.int32) tf.Variable( int(self.behavior_spec.action_spec.is_continuous()), name="is_continuous_control", trainable=False, dtype=tf.int32, ) int_version = TFPolicy._convert_version_string(__version__) major_ver_t = tf.Variable( int_version[0], name="trainer_major_version", trainable=False, dtype=tf.int32, ) minor_ver_t = tf.Variable( int_version[1], name="trainer_minor_version", trainable=False, dtype=tf.int32, ) patch_ver_t = tf.Variable( int_version[2], name="trainer_patch_version", trainable=False, dtype=tf.int32, ) self.version_tensors = (major_ver_t, minor_ver_t, patch_ver_t) tf.Variable( MODEL_FORMAT_VERSION, name="version_number", trainable=False, dtype=tf.int32, ) tf.Variable( self.m_size, name="memory_size", trainable=False, dtype=tf.int32 ) if self.behavior_spec.action_spec.is_continuous(): tf.Variable( self.act_size[0], name="action_output_shape", trainable=False, dtype=tf.int32, ) else: tf.Variable( sum(self.act_size), name="action_output_shape", trainable=False, dtype=tf.int32, ) def _create_cc_actor( self, encoded: tf.Tensor, tanh_squash: bool = False, reparameterize: bool = False, condition_sigma_on_obs: bool = True, ) -> None: """ Creates Continuous control actor-critic model. :param h_size: Size of hidden linear layers. :param num_layers: Number of hidden linear layers. :param vis_encode_type: Type of visual encoder to use if visual input. :param tanh_squash: Whether to use a tanh function, or a clipped output. :param reparameterize: Whether we are using the resampling trick to update the policy. """ if self.use_recurrent: self.memory_in = tf.placeholder( shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in" ) hidden_policy, memory_policy_out = ModelUtils.create_recurrent_encoder( encoded, self.memory_in, self.sequence_length_ph, name="lstm_policy" ) self.memory_out = tf.identity(memory_policy_out, name="recurrent_out") else: hidden_policy = encoded with tf.variable_scope("policy"): distribution = GaussianDistribution( hidden_policy, self.act_size, reparameterize=reparameterize, tanh_squash=tanh_squash, condition_sigma=condition_sigma_on_obs, ) if tanh_squash: self.output_pre = distribution.sample self.output = tf.identity(self.output_pre, name="action") else: self.output_pre = distribution.sample # Clip and scale output to ensure actions are always within [-1, 1] range. output_post = tf.clip_by_value(self.output_pre, -3, 3) / 3 self.output = tf.identity(output_post, name="action") self.selected_actions = tf.stop_gradient(self.output) self.all_log_probs = tf.identity(distribution.log_probs, name="action_probs") self.entropy = distribution.entropy # We keep these tensors the same name, but use new nodes to keep code parallelism with discrete control. self.total_log_probs = distribution.total_log_probs def _create_dc_actor(self, encoded: tf.Tensor) -> None: """ Creates Discrete control actor-critic model. :param h_size: Size of hidden linear layers. :param num_layers: Number of hidden linear layers. :param vis_encode_type: Type of visual encoder to use if visual input. """ if self.use_recurrent: self.prev_action = tf.placeholder( shape=[None, len(self.act_size)], dtype=tf.int32, name="prev_action" ) prev_action_oh = tf.concat( [ tf.one_hot(self.prev_action[:, i], self.act_size[i]) for i in range(len(self.act_size)) ], axis=1, ) hidden_policy = tf.concat([encoded, prev_action_oh], axis=1) self.memory_in = tf.placeholder( shape=[None, self.m_size], dtype=tf.float32, name="recurrent_in" ) hidden_policy, memory_policy_out = ModelUtils.create_recurrent_encoder( hidden_policy, self.memory_in, self.sequence_length_ph, name="lstm_policy", ) self.memory_out = tf.identity(memory_policy_out, "recurrent_out") else: hidden_policy = encoded self.action_masks = tf.placeholder( shape=[None, sum(self.act_size)], dtype=tf.float32, name="action_masks" ) with tf.variable_scope("policy"): distribution = MultiCategoricalDistribution( hidden_policy, self.act_size, self.action_masks ) # It's important that we are able to feed_dict a value into this tensor to get the # right one-hot encoding, so we can't do identity on it. self.output = distribution.sample self.all_log_probs = tf.identity(distribution.log_probs, name="action") self.selected_actions = tf.stop_gradient( distribution.sample_onehot ) # In discrete, these are onehot self.entropy = distribution.entropy self.total_log_probs = distribution.total_log_probs