import warnings import attr import cattr from typing import Dict, Optional, List, Any, DefaultDict, Mapping, Tuple, Union from enum import Enum import collections import argparse import abc import numpy as np import math from mlagents.trainers.cli_utils import StoreConfigFile, DetectDefault, parser from mlagents.trainers.cli_utils import load_config from mlagents.trainers.exception import TrainerConfigError, TrainerConfigWarning from mlagents_envs import logging_util from mlagents_envs.side_channel.environment_parameters_channel import ( EnvironmentParametersChannel, ) logger = logging_util.get_logger(__name__) def check_and_structure(key: str, value: Any, class_type: type) -> Any: attr_fields_dict = attr.fields_dict(class_type) if key not in attr_fields_dict: raise TrainerConfigError( f"The option {key} was specified in your YAML file for {class_type.__name__}, but is invalid." ) # Apply cattr structure to the values return cattr.structure(value, attr_fields_dict[key].type) def strict_to_cls(d: Mapping, t: type) -> Any: if not isinstance(d, Mapping): raise TrainerConfigError(f"Unsupported config {d} for {t.__name__}.") d_copy: Dict[str, Any] = {} d_copy.update(d) for key, val in d_copy.items(): d_copy[key] = check_and_structure(key, val, t) return t(**d_copy) def defaultdict_to_dict(d: DefaultDict) -> Dict: return {key: cattr.unstructure(val) for key, val in d.items()} class TestingConfiguration: use_torch = True max_steps = 0 env_name = "" device = "cpu" class SerializationSettings: convert_to_barracuda = True convert_to_onnx = True onnx_opset = 9 @attr.s(auto_attribs=True) class ExportableSettings: def as_dict(self): return cattr.unstructure(self) class EncoderType(Enum): SIMPLE = "simple" NATURE_CNN = "nature_cnn" RESNET = "resnet" class ScheduleType(Enum): CONSTANT = "constant" LINEAR = "linear" @attr.s(auto_attribs=True) class NetworkSettings: @attr.s class MemorySettings: sequence_length: int = attr.ib(default=64) memory_size: int = attr.ib(default=128) @memory_size.validator def _check_valid_memory_size(self, attribute, value): if value <= 0: raise TrainerConfigError( "When using a recurrent network, memory size must be greater than 0." ) elif value % 2 != 0: raise TrainerConfigError( "When using a recurrent network, memory size must be divisible by 2." ) normalize: bool = False hidden_units: int = 128 num_layers: int = 2 vis_encode_type: EncoderType = EncoderType.SIMPLE memory: Optional[MemorySettings] = None @attr.s(auto_attribs=True) class BehavioralCloningSettings: demo_path: str steps: int = 0 strength: float = 1.0 samples_per_update: int = 0 # Setting either of these to None will allow the Optimizer # to decide these parameters, based on Trainer hyperparams num_epoch: Optional[int] = None batch_size: Optional[int] = None @attr.s(auto_attribs=True) class HyperparamSettings: batch_size: int = 1024 buffer_size: int = 10240 learning_rate: float = 3.0e-4 learning_rate_schedule: ScheduleType = ScheduleType.CONSTANT @attr.s(auto_attribs=True) class PPOSettings(HyperparamSettings): beta: float = 5.0e-3 epsilon: float = 0.2 lambd: float = 0.95 num_epoch: int = 3 learning_rate_schedule: ScheduleType = ScheduleType.LINEAR @attr.s(auto_attribs=True) class SACSettings(HyperparamSettings): batch_size: int = 128 buffer_size: int = 50000 buffer_init_steps: int = 0 tau: float = 0.005 steps_per_update: float = 1 save_replay_buffer: bool = False init_entcoef: float = 1.0 reward_signal_steps_per_update: float = attr.ib() @reward_signal_steps_per_update.default def _reward_signal_steps_per_update_default(self): return self.steps_per_update # INTRINSIC REWARD SIGNALS ############################################################# class RewardSignalType(Enum): EXTRINSIC: str = "extrinsic" GAIL: str = "gail" CURIOSITY: str = "curiosity" def to_settings(self) -> type: _mapping = { RewardSignalType.EXTRINSIC: RewardSignalSettings, RewardSignalType.GAIL: GAILSettings, RewardSignalType.CURIOSITY: CuriositySettings, } return _mapping[self] @attr.s(auto_attribs=True) class RewardSignalSettings: gamma: float = 0.99 strength: float = 1.0 @staticmethod def structure(d: Mapping, t: type) -> Any: """ Helper method to structure a Dict of RewardSignalSettings class. Meant to be registered with cattr.register_structure_hook() and called with cattr.structure(). This is needed to handle the special Enum selection of RewardSignalSettings classes. """ if not isinstance(d, Mapping): raise TrainerConfigError(f"Unsupported reward signal configuration {d}.") d_final: Dict[RewardSignalType, RewardSignalSettings] = {} for key, val in d.items(): enum_key = RewardSignalType(key) t = enum_key.to_settings() d_final[enum_key] = strict_to_cls(val, t) return d_final @attr.s(auto_attribs=True) class GAILSettings(RewardSignalSettings): encoding_size: int = 64 learning_rate: float = 3e-4 use_actions: bool = False use_vail: bool = False demo_path: str = attr.ib(kw_only=True) @attr.s(auto_attribs=True) class CuriositySettings(RewardSignalSettings): encoding_size: int = 64 learning_rate: float = 3e-4 # SAMPLERS ############################################################################# class ParameterRandomizationType(Enum): UNIFORM: str = "uniform" GAUSSIAN: str = "gaussian" MULTIRANGEUNIFORM: str = "multirangeuniform" CONSTANT: str = "constant" def to_settings(self) -> type: _mapping = { ParameterRandomizationType.UNIFORM: UniformSettings, ParameterRandomizationType.GAUSSIAN: GaussianSettings, ParameterRandomizationType.MULTIRANGEUNIFORM: MultiRangeUniformSettings, ParameterRandomizationType.CONSTANT: ConstantSettings # Constant type is handled if a float is provided instead of a config } return _mapping[self] @attr.s(auto_attribs=True) class ParameterRandomizationSettings(abc.ABC): seed: int = parser.get_default("seed") @staticmethod def structure( d: Union[Mapping, float], t: type ) -> "ParameterRandomizationSettings": """ Helper method to a ParameterRandomizationSettings class. Meant to be registered with cattr.register_structure_hook() and called with cattr.structure(). This is needed to handle the special Enum selection of ParameterRandomizationSettings classes. """ if isinstance(d, (float, int)): return ConstantSettings(value=d) if not isinstance(d, Mapping): raise TrainerConfigError( f"Unsupported parameter randomization configuration {d}." ) if "sampler_type" not in d: raise TrainerConfigError( f"Sampler configuration does not contain sampler_type : {d}." ) if "sampler_parameters" not in d: raise TrainerConfigError( f"Sampler configuration does not contain sampler_parameters : {d}." ) enum_key = ParameterRandomizationType(d["sampler_type"]) t = enum_key.to_settings() return strict_to_cls(d["sampler_parameters"], t) @staticmethod def unstructure(d: "ParameterRandomizationSettings") -> Mapping: """ Helper method to a ParameterRandomizationSettings class. Meant to be registered with cattr.register_unstructure_hook() and called with cattr.unstructure(). """ _reversed_mapping = { UniformSettings: ParameterRandomizationType.UNIFORM, GaussianSettings: ParameterRandomizationType.GAUSSIAN, MultiRangeUniformSettings: ParameterRandomizationType.MULTIRANGEUNIFORM, ConstantSettings: ParameterRandomizationType.CONSTANT, } sampler_type: Optional[str] = None for t, name in _reversed_mapping.items(): if isinstance(d, t): sampler_type = name.value sampler_parameters = attr.asdict(d) return {"sampler_type": sampler_type, "sampler_parameters": sampler_parameters} @abc.abstractmethod def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None: """ Helper method to send sampler settings over EnvironmentParametersChannel Calls the appropriate sampler type set method. :param key: environment parameter to be sampled :param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment """ pass @attr.s(auto_attribs=True) class ConstantSettings(ParameterRandomizationSettings): value: float = 0.0 def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None: """ Helper method to send sampler settings over EnvironmentParametersChannel Calls the constant sampler type set method. :param key: environment parameter to be sampled :param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment """ env_channel.set_float_parameter(key, self.value) @attr.s(auto_attribs=True) class UniformSettings(ParameterRandomizationSettings): min_value: float = attr.ib() max_value: float = 1.0 @min_value.default def _min_value_default(self): return 0.0 @min_value.validator def _check_min_value(self, attribute, value): if self.min_value > self.max_value: raise TrainerConfigError( "Minimum value is greater than maximum value in uniform sampler." ) def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None: """ Helper method to send sampler settings over EnvironmentParametersChannel Calls the uniform sampler type set method. :param key: environment parameter to be sampled :param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment """ env_channel.set_uniform_sampler_parameters( key, self.min_value, self.max_value, self.seed ) @attr.s(auto_attribs=True) class GaussianSettings(ParameterRandomizationSettings): mean: float = 1.0 st_dev: float = 1.0 def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None: """ Helper method to send sampler settings over EnvironmentParametersChannel Calls the gaussian sampler type set method. :param key: environment parameter to be sampled :param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment """ env_channel.set_gaussian_sampler_parameters( key, self.mean, self.st_dev, self.seed ) @attr.s(auto_attribs=True) class MultiRangeUniformSettings(ParameterRandomizationSettings): intervals: List[Tuple[float, float]] = attr.ib() @intervals.default def _intervals_default(self): return [[0.0, 1.0]] @intervals.validator def _check_intervals(self, attribute, value): for interval in self.intervals: if len(interval) != 2: raise TrainerConfigError( f"The sampling interval {interval} must contain exactly two values." ) min_value, max_value = interval if min_value > max_value: raise TrainerConfigError( f"Minimum value is greater than maximum value in interval {interval}." ) def apply(self, key: str, env_channel: EnvironmentParametersChannel) -> None: """ Helper method to send sampler settings over EnvironmentParametersChannel Calls the multirangeuniform sampler type set method. :param key: environment parameter to be sampled :param env_channel: The EnvironmentParametersChannel to communicate sampler settings to environment """ env_channel.set_multirangeuniform_sampler_parameters( key, self.intervals, self.seed ) # ENVIRONMENT PARAMETERS ############################################################### @attr.s(auto_attribs=True) class CompletionCriteriaSettings: """ CompletionCriteriaSettings contains the information needed to figure out if the next lesson must start. """ class MeasureType(Enum): PROGRESS: str = "progress" REWARD: str = "reward" behavior: str measure: MeasureType = attr.ib(default=MeasureType.REWARD) min_lesson_length: int = 0 signal_smoothing: bool = True threshold: float = attr.ib(default=0.0) require_reset: bool = False @threshold.validator def _check_threshold_value(self, attribute, value): """ Verify that the threshold has a value between 0 and 1 when the measure is PROGRESS """ if self.measure == self.MeasureType.PROGRESS: if self.threshold > 1.0: raise TrainerConfigError( "Threshold for next lesson cannot be greater than 1 when the measure is progress." ) if self.threshold < 0.0: raise TrainerConfigError( "Threshold for next lesson cannot be negative when the measure is progress." ) def need_increment( self, progress: float, reward_buffer: List[float], smoothing: float ) -> Tuple[bool, float]: """ Given measures, this method returns a boolean indicating if the lesson needs to change now, and a float corresponding to the new smoothed value. """ # Is the min number of episodes reached if len(reward_buffer) < self.min_lesson_length: return False, smoothing if self.measure == CompletionCriteriaSettings.MeasureType.PROGRESS: if progress > self.threshold: return True, smoothing if self.measure == CompletionCriteriaSettings.MeasureType.REWARD: if len(reward_buffer) < 1: return False, smoothing measure = np.mean(reward_buffer) if math.isnan(measure): return False, smoothing if self.signal_smoothing: measure = 0.25 * smoothing + 0.75 * measure smoothing = measure if measure > self.threshold: return True, smoothing return False, smoothing @attr.s(auto_attribs=True) class Lesson: """ Gathers the data of one lesson for one environment parameter including its name, the condition that must be fullfiled for the lesson to be completed and a sampler for the environment parameter. If the completion_criteria is None, then this is the last lesson in the curriculum. """ value: ParameterRandomizationSettings name: str completion_criteria: Optional[CompletionCriteriaSettings] = attr.ib(default=None) @attr.s(auto_attribs=True) class EnvironmentParameterSettings: """ EnvironmentParameterSettings is an ordered list of lessons for one environment parameter. """ curriculum: List[Lesson] @staticmethod def _check_lesson_chain(lessons, parameter_name): """ Ensures that when using curriculum, all non-terminal lessons have a valid CompletionCriteria, and that the terminal lesson does not contain a CompletionCriteria. """ num_lessons = len(lessons) for index, lesson in enumerate(lessons): if index < num_lessons - 1 and lesson.completion_criteria is None: raise TrainerConfigError( f"A non-terminal lesson does not have a completion_criteria for {parameter_name}." ) if index == num_lessons - 1 and lesson.completion_criteria is not None: warnings.warn( f"Your final lesson definition contains completion_criteria for {parameter_name}." f"It will be ignored.", TrainerConfigWarning, ) @staticmethod def structure(d: Mapping, t: type) -> Dict[str, "EnvironmentParameterSettings"]: """ Helper method to structure a Dict of EnvironmentParameterSettings class. Meant to be registered with cattr.register_structure_hook() and called with cattr.structure(). """ if not isinstance(d, Mapping): raise TrainerConfigError( f"Unsupported parameter environment parameter settings {d}." ) d_final: Dict[str, EnvironmentParameterSettings] = {} for environment_parameter, environment_parameter_config in d.items(): if ( isinstance(environment_parameter_config, Mapping) and "curriculum" in environment_parameter_config ): d_final[environment_parameter] = strict_to_cls( environment_parameter_config, EnvironmentParameterSettings ) EnvironmentParameterSettings._check_lesson_chain( d_final[environment_parameter].curriculum, environment_parameter ) else: sampler = ParameterRandomizationSettings.structure( environment_parameter_config, ParameterRandomizationSettings ) d_final[environment_parameter] = EnvironmentParameterSettings( curriculum=[ Lesson( completion_criteria=None, value=sampler, name=environment_parameter, ) ] ) return d_final # TRAINERS ############################################################################# @attr.s(auto_attribs=True) class SelfPlaySettings: save_steps: int = 20000 team_change: int = attr.ib() @team_change.default def _team_change_default(self): # Assign team_change to about 4x save_steps return self.save_steps * 5 swap_steps: int = 2000 window: int = 10 play_against_latest_model_ratio: float = 0.5 initial_elo: float = 1200.0 class TrainerType(Enum): PPO: str = "ppo" SAC: str = "sac" def to_settings(self) -> type: _mapping = {TrainerType.PPO: PPOSettings, TrainerType.SAC: SACSettings} return _mapping[self] class FrameworkType(Enum): TENSORFLOW: str = "tensorflow" PYTORCH: str = "pytorch" @attr.s(auto_attribs=True) class TrainerSettings(ExportableSettings): trainer_type: TrainerType = TrainerType.PPO hyperparameters: HyperparamSettings = attr.ib() @hyperparameters.default def _set_default_hyperparameters(self): return self.trainer_type.to_settings()() network_settings: NetworkSettings = attr.ib(factory=NetworkSettings) reward_signals: Dict[RewardSignalType, RewardSignalSettings] = attr.ib( factory=lambda: {RewardSignalType.EXTRINSIC: RewardSignalSettings()} ) init_path: Optional[str] = None keep_checkpoints: int = 5 checkpoint_interval: int = 500000 max_steps: int = 500000 time_horizon: int = 64 summary_freq: int = 50000 threaded: bool = True self_play: Optional[SelfPlaySettings] = None behavioral_cloning: Optional[BehavioralCloningSettings] = None framework: FrameworkType = FrameworkType.TENSORFLOW cattr.register_structure_hook( Dict[RewardSignalType, RewardSignalSettings], RewardSignalSettings.structure ) @network_settings.validator def _check_batch_size_seq_length(self, attribute, value): if self.network_settings.memory is not None: if ( self.network_settings.memory.sequence_length > self.hyperparameters.batch_size ): raise TrainerConfigError( "When using memory, sequence length must be less than or equal to batch size. " ) @staticmethod def dict_to_defaultdict(d: Dict, t: type) -> DefaultDict: return collections.defaultdict( TrainerSettings, cattr.structure(d, Dict[str, TrainerSettings]) ) @staticmethod def structure(d: Mapping, t: type) -> Any: """ Helper method to structure a TrainerSettings class. Meant to be registered with cattr.register_structure_hook() and called with cattr.structure(). """ if not isinstance(d, Mapping): raise TrainerConfigError(f"Unsupported config {d} for {t.__name__}.") d_copy: Dict[str, Any] = {} d_copy.update(d) for key, val in d_copy.items(): if attr.has(type(val)): # Don't convert already-converted attrs classes. continue if key == "hyperparameters": if "trainer_type" not in d_copy: raise TrainerConfigError( "Hyperparameters were specified but no trainer_type was given." ) else: d_copy[key] = strict_to_cls( d_copy[key], TrainerType(d_copy["trainer_type"]).to_settings() ) elif key == "max_steps": d_copy[key] = int(float(val)) # In some legacy configs, max steps was specified as a float else: d_copy[key] = check_and_structure(key, val, t) return t(**d_copy) # COMMAND LINE ######################################################################### @attr.s(auto_attribs=True) class CheckpointSettings: run_id: str = parser.get_default("run_id") initialize_from: Optional[str] = parser.get_default("initialize_from") load_model: bool = parser.get_default("load_model") resume: bool = parser.get_default("resume") force: bool = parser.get_default("force") train_model: bool = parser.get_default("train_model") inference: bool = parser.get_default("inference") @attr.s(auto_attribs=True) class EnvironmentSettings: env_path: Optional[str] = parser.get_default("env_path") env_args: Optional[List[str]] = parser.get_default("env_args") base_port: int = parser.get_default("base_port") num_envs: int = attr.ib(default=parser.get_default("num_envs")) seed: int = parser.get_default("seed") @num_envs.validator def validate_num_envs(self, attribute, value): if value > 1 and self.env_path is None: raise ValueError("num_envs must be 1 if env_path is not set.") @attr.s(auto_attribs=True) class EngineSettings: width: int = parser.get_default("width") height: int = parser.get_default("height") quality_level: int = parser.get_default("quality_level") time_scale: float = parser.get_default("time_scale") target_frame_rate: int = parser.get_default("target_frame_rate") capture_frame_rate: int = parser.get_default("capture_frame_rate") no_graphics: bool = parser.get_default("no_graphics") @attr.s(auto_attribs=True) class RunOptions(ExportableSettings): behaviors: DefaultDict[str, TrainerSettings] = attr.ib( factory=lambda: collections.defaultdict(TrainerSettings) ) env_settings: EnvironmentSettings = attr.ib(factory=EnvironmentSettings) engine_settings: EngineSettings = attr.ib(factory=EngineSettings) environment_parameters: Optional[Dict[str, EnvironmentParameterSettings]] = None checkpoint_settings: CheckpointSettings = attr.ib(factory=CheckpointSettings) # These are options that are relevant to the run itself, and not the engine or environment. # They will be left here. debug: bool = parser.get_default("debug") # Strict conversion cattr.register_structure_hook(EnvironmentSettings, strict_to_cls) cattr.register_structure_hook(EngineSettings, strict_to_cls) cattr.register_structure_hook(CheckpointSettings, strict_to_cls) cattr.register_structure_hook( Dict[str, EnvironmentParameterSettings], EnvironmentParameterSettings.structure ) cattr.register_structure_hook(Lesson, strict_to_cls) cattr.register_structure_hook( ParameterRandomizationSettings, ParameterRandomizationSettings.structure ) cattr.register_unstructure_hook( ParameterRandomizationSettings, ParameterRandomizationSettings.unstructure ) cattr.register_structure_hook(TrainerSettings, TrainerSettings.structure) cattr.register_structure_hook( DefaultDict[str, TrainerSettings], TrainerSettings.dict_to_defaultdict ) cattr.register_unstructure_hook(collections.defaultdict, defaultdict_to_dict) @staticmethod def from_argparse(args: argparse.Namespace) -> "RunOptions": """ Takes an argparse.Namespace as specified in `parse_command_line`, loads input configuration files from file paths, and converts to a RunOptions instance. :param args: collection of command-line parameters passed to mlagents-learn :return: RunOptions representing the passed in arguments, with trainer config, curriculum and sampler configs loaded from files. """ argparse_args = vars(args) config_path = StoreConfigFile.trainer_config_path # Load YAML configured_dict: Dict[str, Any] = { "checkpoint_settings": {}, "env_settings": {}, "engine_settings": {}, } if config_path is not None: configured_dict.update(load_config(config_path)) # Use the YAML file values for all values not specified in the CLI. for key in configured_dict.keys(): # Detect bad config options if key not in attr.fields_dict(RunOptions): raise TrainerConfigError( "The option {} was specified in your YAML file, but is invalid.".format( key ) ) # Override with CLI args # Keep deprecated --load working, TODO: remove argparse_args["resume"] = argparse_args["resume"] or argparse_args["load_model"] for key, val in argparse_args.items(): if key in DetectDefault.non_default_args: if key in attr.fields_dict(CheckpointSettings): configured_dict["checkpoint_settings"][key] = val elif key in attr.fields_dict(EnvironmentSettings): configured_dict["env_settings"][key] = val elif key in attr.fields_dict(EngineSettings): configured_dict["engine_settings"][key] = val else: # Base options configured_dict[key] = val # Apply --torch retroactively final_runoptions = RunOptions.from_dict(configured_dict) if "torch" in DetectDefault.non_default_args: for trainer_set in final_runoptions.behaviors.values(): trainer_set.framework = FrameworkType.PYTORCH return final_runoptions @staticmethod def from_dict(options_dict: Dict[str, Any]) -> "RunOptions": return cattr.structure(options_dict, RunOptions)