import abc from typing import List, Tuple from mlagents.torch_utils import torch, nn import numpy as np import math from mlagents.trainers.torch.layers import linear_layer, Initialization from mlagents.trainers.torch.distributions import DistInstance, DiscreteDistInstance, GaussianDistribution, MultiCategoricalDistribution from mlagents.trainers.torch.utils import ModelUtils EPSILON = 1e-7 # Small value to avoid divide by zero class HybridActionModel(nn.Module): def __init__( self, hidden_size: int, continuous_act_size: int, discrete_act_size: List[int], conditional_sigma: bool = False, tanh_squash: bool = False, ): super().__init__() self.encoding_size = hidden_size self.continuous_act_size = continuous_act_size self.discrete_act_size = discrete_act_size self._split_list : List[int] = [] self._distributions = torch.nn.ModuleList() if continuous_act_size > 0: self._distributions.append(GaussianDistribution( self.encoding_size, continuous_act_size, conditional_sigma=conditional_sigma, tanh_squash=tanh_squash, ) ) self._split_list.append(continuous_act_size) if len(discrete_act_size) > 0: self._distributions.append(MultiCategoricalDistribution(self.encoding_size, discrete_act_size)) self._split_list += [1 for _ in range(len(discrete_act_size))] def _sample_action(self, dists: List[DistInstance]) -> List[torch.Tensor]: """ Samples actions from list of distribution instances """ actions = [] for action_dist in dists: action = action_dist.sample() actions.append(action) return actions def _get_dists(self, inputs: torch.Tensor, masks: torch.Tensor) -> Tuple[List[DistInstance], List[DiscreteDistInstance]]: distribution_instances: List[DistInstance] = [] for distribution in self._distributions: dist_instances = distribution(inputs, masks) for dist_instance in dist_instances: distribution_instances.append(dist_instance) return distribution_instances def evaluate(self, inputs: torch.Tensor, masks: torch.Tensor, actions: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: dists = self._get_dists(inputs, masks) split_actions = torch.split(actions, self._split_list, dim=1) action_lists : List[torch.Tensor] = [] for split_action in split_actions: action_list = [split_action[..., i] for i in range(split_action.shape[-1])] action_lists += action_list log_probs, entropies, _ = ModelUtils.get_probs_and_entropy(action_lists, dists) #self._get_stats(actions, dists) return log_probs, entropies def get_action_out(self, inputs: torch.Tensor, masks: torch.Tensor) -> torch.Tensor: dists = self._get_dists(inputs, masks) return torch.cat([dist.exported_model_output() for dist in dists], dim=1) def forward(self, inputs: torch.Tensor, masks: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: dists = self._get_dists(inputs, masks) action_outs : List[torch.Tensor] = [] action_lists = self._sample_action(dists) for action_list, dist in zip(action_lists, dists): action_out = action_list.unsqueeze(-1)#torch.stack(action_list, dim=-1) action_outs.append(dist.structure_action(action_out)) log_probs, entropies, _ = ModelUtils.get_probs_and_entropy(action_lists, dists) #self._get_stats(actions, dists)self._get_stats(action_lists, dists) action = torch.cat(action_outs, dim=1) return (action, log_probs, entropies)