import tensorflow as tf import tensorflow.contrib.layers as c_layers from mlagents.trainers.models import LearningModel class BehavioralCloningModel(LearningModel): def __init__(self, brain, h_size=128, lr=1e-4, n_layers=2, m_size=128, normalize=False, use_recurrent=False, scope='PPO', seed=0): with tf.variable_scope(scope): LearningModel.__init__(self, m_size, normalize, use_recurrent, brain, seed) num_streams = 1 hidden_streams = self.create_observation_streams(num_streams, h_size, n_layers) hidden = hidden_streams[0] self.dropout_rate = tf.placeholder(dtype=tf.float32, shape=[], name="dropout_rate") hidden_reg = tf.layers.dropout(hidden, self.dropout_rate) if self.use_recurrent: tf.Variable(self.m_size, name="memory_size", trainable=False, dtype=tf.int32) self.memory_in = tf.placeholder(shape=[None, self.m_size], dtype=tf.float32, name='recurrent_in') hidden_reg, self.memory_out = self.create_recurrent_encoder(hidden_reg, self.memory_in, self.sequence_length) self.memory_out = tf.identity(self.memory_out, name='recurrent_out') if brain.vector_action_space_type == "discrete": policy_branches = [] for size in self.act_size: policy_branches.append( tf.layers.dense( hidden, size, activation=None, use_bias=False, kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01))) self.action_probs = tf.concat( [tf.nn.softmax(branch) for branch in policy_branches], axis=1, name="action_probs") self.action_masks = tf.placeholder(shape=[None, sum(self.act_size)], dtype=tf.float32, name="action_masks") self.sample_action_float, _ = self.create_discrete_action_masking_layer( tf.concat(policy_branches, axis = 1), self.action_masks, self.act_size) self.sample_action_float = tf.identity(self.sample_action_float, name="action") self.sample_action = tf.cast(self.sample_action_float, tf.int32) self.true_action = tf.placeholder(shape=[None, len(policy_branches)], dtype=tf.int32, name="teacher_action") self.action_oh = tf.concat([ tf.one_hot(self.true_action[:, i], self.act_size[i]) for i in range(len(self.act_size))], axis=1) self.loss = tf.reduce_sum(-tf.log(self.action_probs + 1e-10) * self.action_oh) self.action_percent = tf.reduce_mean(tf.cast( tf.equal(tf.cast(tf.argmax(self.action_probs, axis=1), tf.int32), self.sample_action), tf.float32)) else: self.policy = tf.layers.dense(hidden_reg, self.act_size[0], activation=None, use_bias=False, name='pre_action', kernel_initializer=c_layers.variance_scaling_initializer(factor=0.01)) self.clipped_sample_action = tf.clip_by_value(self.policy, -1, 1) self.sample_action = tf.identity(self.clipped_sample_action, name="action") self.true_action = tf.placeholder(shape=[None, self.act_size[0]], dtype=tf.float32, name="teacher_action") self.clipped_true_action = tf.clip_by_value(self.true_action, -1, 1) self.loss = tf.reduce_sum(tf.squared_difference(self.clipped_true_action, self.sample_action)) optimizer = tf.train.AdamOptimizer(learning_rate=lr) self.update = optimizer.minimize(self.loss)