from .communicator import Communicator from .environment import UnityEnvironment from mlagents.envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutputProto from mlagents.envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto from mlagents.envs.communicator_objects.unity_rl_initialization_output_pb2 import ( UnityRLInitializationOutputProto, ) from mlagents.envs.communicator_objects.unity_input_pb2 import UnityInputProto from mlagents.envs.communicator_objects.unity_output_pb2 import UnityOutputProto from mlagents.envs.communicator_objects.agent_info_pb2 import AgentInfoProto from mlagents.envs.communicator_objects.observation_pb2 import ( ObservationProto, NONE as COMPRESSION_TYPE_NONE, PNG as COMPRESSION_TYPE_PNG, ) class MockCommunicator(Communicator): def __init__( self, discrete_action=False, visual_inputs=0, num_agents=3, brain_name="RealFakeBrain", vec_obs_size=3, ): """ Python side of the grpc communication. Python is the client and Unity the server :int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this. :int worker_id: Number to add to communication port (5005) [0]. Used for asynchronous agent scenarios. """ super().__init__() self.is_discrete = discrete_action self.steps = 0 self.visual_inputs = visual_inputs self.has_been_closed = False self.num_agents = num_agents self.brain_name = brain_name self.vec_obs_size = vec_obs_size def initialize(self, inputs: UnityInputProto) -> UnityOutputProto: bp = BrainParametersProto( vector_action_size=[2], vector_action_descriptions=["", ""], vector_action_space_type=int(not self.is_discrete), brain_name=self.brain_name, is_training=True, ) rl_init = UnityRLInitializationOutputProto( name="RealFakeAcademy", version=UnityEnvironment.API_VERSION, log_path="", brain_parameters=[bp], ) output = UnityRLOutputProto(agentInfos=self._get_agent_infos()) return UnityOutputProto(rl_initialization_output=rl_init, rl_output=output) def _get_agent_infos(self): dict_agent_info = {} list_agent_info = [] vector_obs = [1, 2, 3] observations = [ ObservationProto( compressed_data=None, shape=[30, 40, 3], compression_type=COMPRESSION_TYPE_PNG, ) for _ in range(self.visual_inputs) ] vector_obs_proto = ObservationProto( float_data=ObservationProto.FloatData(data=vector_obs), shape=[len(vector_obs)], compression_type=COMPRESSION_TYPE_NONE, ) observations.append(vector_obs_proto) for i in range(self.num_agents): list_agent_info.append( AgentInfoProto( reward=1, done=(i == 2), max_step_reached=False, id=i, observations=observations, ) ) dict_agent_info["RealFakeBrain"] = UnityRLOutputProto.ListAgentInfoProto( value=list_agent_info ) return dict_agent_info def exchange(self, inputs: UnityInputProto) -> UnityOutputProto: result = UnityRLOutputProto(agentInfos=self._get_agent_infos()) return UnityOutputProto(rl_output=result) def close(self): """ Sends a shutdown signal to the unity environment, and closes the grpc connection. """ self.has_been_closed = True