# # Unity ML-Agents Toolkit # ## ML-Agents Learning (POCA) # Contains an implementation of MA-POCA. from collections import defaultdict from typing import cast, Dict import numpy as np from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod from mlagents_envs.logging_util import get_logger from mlagents_envs.base_env import BehaviorSpec from mlagents.trainers.buffer import BufferKey, RewardSignalUtil from mlagents.trainers.trainer.rl_trainer import RLTrainer from mlagents.trainers.policy import Policy from mlagents.trainers.policy.torch_policy import TorchPolicy from mlagents.trainers.poca.optimizer_torch import TorchPOCAOptimizer from mlagents.trainers.trajectory import Trajectory from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers from mlagents.trainers.settings import TrainerSettings, POCASettings logger = get_logger(__name__) class POCATrainer(RLTrainer): """The POCATrainer is an implementation of the MA-POCA algorithm.""" def __init__( self, behavior_name: str, reward_buff_cap: int, trainer_settings: TrainerSettings, training: bool, load: bool, seed: int, artifact_path: str, ): """ Responsible for collecting experiences and training POCA model. :param behavior_name: The name of the behavior associated with trainer config :param reward_buff_cap: Max reward history to track in the reward buffer :param trainer_settings: The parameters for the trainer. :param training: Whether the trainer is set for training. :param load: Whether the model should be loaded. :param seed: The seed the model will be initialized with :param artifact_path: The directory within which to store artifacts from this trainer. """ super().__init__( behavior_name, trainer_settings, training, load, artifact_path, reward_buff_cap, ) self.hyperparameters: POCASettings = cast( POCASettings, self.trainer_settings.hyperparameters ) self.seed = seed self.policy: TorchPolicy = None # type: ignore self.collected_group_rewards: Dict[str, int] = defaultdict(lambda: 0) def _process_trajectory(self, trajectory: Trajectory) -> None: """ Takes a trajectory and processes it, putting it into the update buffer. Processing involves calculating value and advantage targets for model updating step. :param trajectory: The Trajectory tuple containing the steps to be processed. """ super()._process_trajectory(trajectory) agent_id = trajectory.agent_id # All the agents should have the same ID agent_buffer_trajectory = trajectory.to_agentbuffer() # Update the normalization if self.is_training: self.policy.update_normalization(agent_buffer_trajectory) # Get all value estimates ( value_estimates, baseline_estimates, value_next, value_memories, baseline_memories, ) = self.optimizer.get_trajectory_and_baseline_value_estimates( agent_buffer_trajectory, trajectory.next_obs, trajectory.next_group_obs, trajectory.all_group_dones_reached and trajectory.done_reached and not trajectory.interrupted, ) if value_memories is not None and baseline_memories is not None: agent_buffer_trajectory[BufferKey.CRITIC_MEMORY].set(value_memories) agent_buffer_trajectory[BufferKey.BASELINE_MEMORY].set(baseline_memories) for name, v in value_estimates.items(): agent_buffer_trajectory[RewardSignalUtil.value_estimates_key(name)].extend( v ) agent_buffer_trajectory[ RewardSignalUtil.baseline_estimates_key(name) ].extend(baseline_estimates[name]) self._stats_reporter.add_stat( f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Baseline Estimate", np.mean(baseline_estimates[name]), ) self._stats_reporter.add_stat( f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Value Estimate", np.mean(value_estimates[name]), ) self.collected_rewards["environment"][agent_id] += np.sum( agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS] ) self.collected_group_rewards[agent_id] += np.sum( agent_buffer_trajectory[BufferKey.GROUP_REWARD] ) for name, reward_signal in self.optimizer.reward_signals.items(): evaluate_result = ( reward_signal.evaluate(agent_buffer_trajectory) * reward_signal.strength ) agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].extend( evaluate_result ) # Report the reward signals self.collected_rewards[name][agent_id] += np.sum(evaluate_result) # Compute lambda returns and advantage tmp_advantages = [] for name in self.optimizer.reward_signals: local_rewards = np.array( agent_buffer_trajectory[RewardSignalUtil.rewards_key(name)].get_batch(), dtype=np.float32, ) baseline_estimate = agent_buffer_trajectory[ RewardSignalUtil.baseline_estimates_key(name) ].get_batch() v_estimates = agent_buffer_trajectory[ RewardSignalUtil.value_estimates_key(name) ].get_batch() lambd_returns = lambda_return( r=local_rewards, value_estimates=v_estimates, gamma=self.optimizer.reward_signals[name].gamma, lambd=self.hyperparameters.lambd, value_next=value_next[name], ) local_advantage = np.array(lambd_returns) - np.array(baseline_estimate) agent_buffer_trajectory[RewardSignalUtil.returns_key(name)].set( lambd_returns ) agent_buffer_trajectory[RewardSignalUtil.advantage_key(name)].set( local_advantage ) tmp_advantages.append(local_advantage) # Get global advantages global_advantages = list( np.mean(np.array(tmp_advantages, dtype=np.float32), axis=0) ) agent_buffer_trajectory[BufferKey.ADVANTAGES].set(global_advantages) # Append to update buffer agent_buffer_trajectory.resequence_and_append( self.update_buffer, training_length=self.policy.sequence_length ) # If this was a terminal trajectory, append stats and reset reward collection if trajectory.done_reached: self._update_end_episode_stats(agent_id, self.optimizer) # Remove dead agents from group reward recording if not trajectory.all_group_dones_reached: self.collected_group_rewards.pop(agent_id) # If the whole team is done, average the remaining group rewards. if trajectory.all_group_dones_reached and trajectory.done_reached: self.stats_reporter.add_stat( "Environment/Group Cumulative Reward", self.collected_group_rewards.get(agent_id, 0), aggregation=StatsAggregationMethod.HISTOGRAM, ) self.collected_group_rewards.pop(agent_id) def _is_ready_update(self): """ Returns whether or not the trainer has enough elements to run update model :return: A boolean corresponding to whether or not update_model() can be run """ size_of_buffer = self.update_buffer.num_experiences return size_of_buffer > self.hyperparameters.buffer_size def _update_policy(self): """ Uses demonstration_buffer to update the policy. The reward signal generators must be updated in this method at their own pace. """ buffer_length = self.update_buffer.num_experiences self.cumulative_returns_since_policy_update.clear() # Make sure batch_size is a multiple of sequence length. During training, we # will need to reshape the data into a batch_size x sequence_length tensor. batch_size = ( self.hyperparameters.batch_size - self.hyperparameters.batch_size % self.policy.sequence_length ) # Make sure there is at least one sequence batch_size = max(batch_size, self.policy.sequence_length) n_sequences = max( int(self.hyperparameters.batch_size / self.policy.sequence_length), 1 ) advantages = np.array( self.update_buffer[BufferKey.ADVANTAGES].get_batch(), dtype=np.float32 ) self.update_buffer[BufferKey.ADVANTAGES].set( (advantages - advantages.mean()) / (advantages.std() + 1e-10) ) num_epoch = self.hyperparameters.num_epoch batch_update_stats = defaultdict(list) for _ in range(num_epoch): self.update_buffer.shuffle(sequence_length=self.policy.sequence_length) buffer = self.update_buffer max_num_batch = buffer_length // batch_size for i in range(0, max_num_batch * batch_size, batch_size): update_stats = self.optimizer.update( buffer.make_mini_batch(i, i + batch_size), n_sequences ) for stat_name, value in update_stats.items(): batch_update_stats[stat_name].append(value) for stat, stat_list in batch_update_stats.items(): self._stats_reporter.add_stat(stat, np.mean(stat_list)) if self.optimizer.bc_module: update_stats = self.optimizer.bc_module.update() for stat, val in update_stats.items(): self._stats_reporter.add_stat(stat, val) self._clear_update_buffer() return True def end_episode(self) -> None: """ A signal that the Episode has ended. The buffer must be reset. Get only called when the academy resets. For POCA, we should also zero out the group rewards. """ super().end_episode() self.collected_group_rewards.clear() def create_torch_policy( self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec ) -> TorchPolicy: """ Creates a policy with a PyTorch backend and POCA hyperparameters :param parsed_behavior_id: :param behavior_spec: specifications for policy construction :return policy """ policy = TorchPolicy( self.seed, behavior_spec, self.trainer_settings, condition_sigma_on_obs=False, # Faster training for POCA separate_critic=True, # Match network architecture with TF ) return policy def create_poca_optimizer(self) -> TorchPOCAOptimizer: return TorchPOCAOptimizer(self.policy, self.trainer_settings) def add_policy( self, parsed_behavior_id: BehaviorIdentifiers, policy: Policy ) -> None: """ Adds policy to trainer. :param parsed_behavior_id: Behavior identifiers that the policy should belong to. :param policy: Policy to associate with name_behavior_id. """ if not isinstance(policy, TorchPolicy): raise RuntimeError(f"policy {policy} must be an instance of TorchPolicy.") self.policy = policy self.policies[parsed_behavior_id.behavior_id] = policy self.optimizer = self.create_poca_optimizer() for _reward_signal in self.optimizer.reward_signals.keys(): self.collected_rewards[_reward_signal] = defaultdict(lambda: 0) self.model_saver.register(self.policy) self.model_saver.register(self.optimizer) self.model_saver.initialize_or_load() # Needed to resume loads properly self._step = policy.get_current_step() def get_policy(self, name_behavior_id: str) -> Policy: """ Gets policy from trainer associated with name_behavior_id :param name_behavior_id: full identifier of policy """ return self.policy def lambda_return(r, value_estimates, gamma=0.99, lambd=0.8, value_next=0.0): returns = np.zeros_like(r) returns[-1] = r[-1] + gamma * value_next for t in reversed(range(0, r.size - 1)): returns[t] = ( gamma * lambd * returns[t + 1] + r[t] + (1 - lambd) * gamma * value_estimates[t + 1] ) return returns