import numpy as np import pytest from mlagents.trainers.trajectory import SplitObservations from mlagents.trainers.tests.mock_brain import make_fake_trajectory from mlagents_envs.base_env import ActionSpec VEC_OBS_SIZE = 6 ACTION_SIZE = 4 @pytest.mark.parametrize("num_visual_obs", [0, 1, 2]) @pytest.mark.parametrize("num_vec_obs", [0, 1]) def test_split_obs(num_visual_obs, num_vec_obs): obs = [] for _ in range(num_visual_obs): obs.append(np.ones((84, 84, 3), dtype=np.float32)) for _ in range(num_vec_obs): obs.append(np.ones(VEC_OBS_SIZE, dtype=np.float32)) split_observations = SplitObservations.from_observations(obs) if num_vec_obs == 1: assert len(split_observations.vector_observations) == VEC_OBS_SIZE else: assert len(split_observations.vector_observations) == 0 # Assert the number of vector observations. assert len(split_observations.visual_observations) == num_visual_obs def test_trajectory_to_agentbuffer(): length = 15 wanted_keys = [ "next_visual_obs0", "visual_obs0", "vector_obs", "next_vector_in", "memory", "masks", "done", "actions_pre", "continuous_action", "action_probs", "action_mask", "prev_continuous_action", "environment_rewards", ] wanted_keys = set(wanted_keys) trajectory = make_fake_trajectory( length=length, observation_shapes=[(VEC_OBS_SIZE,), (84, 84, 3)], action_spec=ActionSpec.create_continuous(ACTION_SIZE), ) agentbuffer = trajectory.to_agentbuffer() seen_keys = set() for key, field in agentbuffer.items(): assert len(field) == length seen_keys.add(key) assert seen_keys == wanted_keys