from typing import Dict, List from mlagents_envs.base_env import BaseEnv, BehaviorName, BehaviorSpec from mlagents.trainers.env_manager import EnvManager, EnvironmentStep, AllStepResult from mlagents_envs.timers import timed from mlagents.trainers.action_info import ActionInfo from mlagents.trainers.settings import ParameterRandomizationSettings from mlagents_envs.side_channel.environment_parameters_channel import ( EnvironmentParametersChannel, ) class SimpleEnvManager(EnvManager): """ Simple implementation of the EnvManager interface that only handles one BaseEnv at a time. This is generally only useful for testing; see SubprocessEnvManager for a production-quality implementation. """ def __init__(self, env: BaseEnv, env_params: EnvironmentParametersChannel): super().__init__() self.env_params = env_params self.env = env self.previous_step: EnvironmentStep = EnvironmentStep.empty(0) self.previous_all_action_info: Dict[str, ActionInfo] = {} def _step(self) -> List[EnvironmentStep]: all_action_info = self._take_step(self.previous_step) self.previous_all_action_info = all_action_info for brain_name, action_info in all_action_info.items(): _action = EnvManager.action_buffers_from_numpy_dict(action_info.action) self.env.set_actions(brain_name, _action) self.env.step() all_step_result = self._generate_all_results() step_info = EnvironmentStep( all_step_result, 0, self.previous_all_action_info, {} ) self.previous_step = step_info return [step_info] def _reset_env( self, config: Dict[BehaviorName, float] = None ) -> List[EnvironmentStep]: # type: ignore self.set_env_parameters(config) self.env.reset() all_step_result = self._generate_all_results() self.previous_step = EnvironmentStep(all_step_result, 0, {}, {}) return [self.previous_step] def set_env_parameters(self, config: Dict = None) -> None: """ Sends environment parameter settings to C# via the EnvironmentParametersSidehannel. :param config: Dict of environment parameter keys and values """ if config is not None: for k, v in config.items(): if isinstance(v, float): self.env_params.set_float_parameter(k, v) elif isinstance(v, ParameterRandomizationSettings): v.apply(k, self.env_params) @property def training_behaviors(self) -> Dict[BehaviorName, BehaviorSpec]: return self.env.behavior_specs def close(self): self.env.close() @timed def _take_step(self, last_step: EnvironmentStep) -> Dict[BehaviorName, ActionInfo]: all_action_info: Dict[str, ActionInfo] = {} for brain_name, step_tuple in last_step.current_all_step_result.items(): all_action_info[brain_name] = self.policies[brain_name].get_action( step_tuple[0], 0, # As there is only one worker, we assign the worker_id to 0. ) return all_action_info def _generate_all_results(self) -> AllStepResult: all_step_result: AllStepResult = {} for brain_name in self.env.behavior_specs: all_step_result[brain_name] = self.env.get_steps(brain_name) return all_step_result