using System; using UnityEngine; using System.Linq; using MLAgents; using UnityEngine.Serialization; public class GridAgent : Agent { [FormerlySerializedAs("m_Area")] [Header("Specific to GridWorld")] public GridArea area; public float timeBetweenDecisionsAtInference; float m_TimeSinceDecision; [Tooltip("Because we want an observation right before making a decision, we can force " + "a camera to render before making a decision. Place the agentCam here if using " + "RenderTexture as observations.")] public Camera renderCamera; [Tooltip("Selecting will turn on action masking. Note that a model trained with action " + "masking turned on may not behave optimally when action masking is turned off.")] public bool maskActions = true; const int k_NoAction = 0; // do nothing! const int k_Up = 1; const int k_Down = 2; const int k_Left = 3; const int k_Right = 4; public override void InitializeAgent() { } public override void CollectObservations() { // There are no numeric observations to collect as this environment uses visual // observations. // Mask the necessary actions if selected by the user. if (maskActions) { SetMask(); } } /// /// Applies the mask for the agents action to disallow unnecessary actions. /// void SetMask() { // Prevents the agent from picking an action that would make it collide with a wall var positionX = (int)transform.position.x; var positionZ = (int)transform.position.z; var maxPosition = (int)Academy.Instance.FloatProperties.GetPropertyWithDefault("gridSize", 5f) - 1; if (positionX == 0) { SetActionMask(k_Left); } if (positionX == maxPosition) { SetActionMask(k_Right); } if (positionZ == 0) { SetActionMask(k_Down); } if (positionZ == maxPosition) { SetActionMask(k_Up); } } // to be implemented by the developer public override void AgentAction(float[] vectorAction) { AddReward(-0.01f); var action = Mathf.FloorToInt(vectorAction[0]); var targetPos = transform.position; switch (action) { case k_NoAction: // do nothing break; case k_Right: targetPos = transform.position + new Vector3(1f, 0, 0f); break; case k_Left: targetPos = transform.position + new Vector3(-1f, 0, 0f); break; case k_Up: targetPos = transform.position + new Vector3(0f, 0, 1f); break; case k_Down: targetPos = transform.position + new Vector3(0f, 0, -1f); break; default: throw new ArgumentException("Invalid action value"); } var hit = Physics.OverlapBox( targetPos, new Vector3(0.3f, 0.3f, 0.3f)); if (hit.Where(col => col.gameObject.CompareTag("wall")).ToArray().Length == 0) { transform.position = targetPos; if (hit.Where(col => col.gameObject.CompareTag("goal")).ToArray().Length == 1) { Done(); SetReward(1f); } if (hit.Where(col => col.gameObject.CompareTag("pit")).ToArray().Length == 1) { Done(); SetReward(-1f); } } } public override float[] Heuristic() { if (Input.GetKey(KeyCode.D)) { return new float[] { k_Right }; } if (Input.GetKey(KeyCode.W)) { return new float[] { k_Up }; } if (Input.GetKey(KeyCode.A)) { return new float[] { k_Left }; } if (Input.GetKey(KeyCode.S)) { return new float[] { k_Down }; } return new float[] { k_NoAction }; } // to be implemented by the developer public override void AgentReset() { area.AreaReset(); } public void FixedUpdate() { WaitTimeInference(); } void WaitTimeInference() { if (renderCamera != null) { renderCamera.Render(); } if (Academy.Instance.IsCommunicatorOn) { RequestDecision(); } else { if (m_TimeSinceDecision >= timeBetweenDecisionsAtInference) { m_TimeSinceDecision = 0f; RequestDecision(); } else { m_TimeSinceDecision += Time.fixedDeltaTime; } } } }