import pytest from mlagents.tf_utils import tf import yaml from mlagents.trainers.distributions import ( GaussianDistribution, MultiCategoricalDistribution, ) @pytest.fixture def dummy_config(): return yaml.safe_load( """ trainer: ppo batch_size: 32 beta: 5.0e-3 buffer_size: 512 epsilon: 0.2 hidden_units: 128 lambd: 0.95 learning_rate: 3.0e-4 max_steps: 5.0e4 normalize: true num_epoch: 5 num_layers: 2 time_horizon: 64 sequence_length: 64 summary_freq: 1000 use_recurrent: false normalize: true memory_size: 8 curiosity_strength: 0.0 curiosity_enc_size: 1 summary_path: test model_path: test reward_signals: extrinsic: strength: 1.0 gamma: 0.99 """ ) VECTOR_ACTION_SPACE = [2] VECTOR_OBS_SPACE = 8 DISCRETE_ACTION_SPACE = [3, 3, 3, 2] BUFFER_INIT_SAMPLES = 32 NUM_AGENTS = 12 def test_gaussian_distribution(): with tf.Graph().as_default(): logits = tf.Variable(initial_value=[[0, 0]], trainable=True, dtype=tf.float32) distribution = GaussianDistribution( logits, act_size=VECTOR_ACTION_SPACE, reparameterize=False, tanh_squash=False, ) sess = tf.Session() with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) output = sess.run(distribution.sample) for _ in range(10): output = sess.run([distribution.sample, distribution.log_probs]) for out in output: assert out.shape[1] == VECTOR_ACTION_SPACE[0] output = sess.run([distribution.total_log_probs]) assert output[0].shape[0] == 1 def test_tanh_distribution(): with tf.Graph().as_default(): logits = tf.Variable(initial_value=[[0, 0]], trainable=True, dtype=tf.float32) distribution = GaussianDistribution( logits, act_size=VECTOR_ACTION_SPACE, reparameterize=False, tanh_squash=True ) sess = tf.Session() with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) output = sess.run(distribution.sample) for _ in range(10): output = sess.run([distribution.sample, distribution.log_probs]) for out in output: assert out.shape[1] == VECTOR_ACTION_SPACE[0] # Assert action never exceeds [-1,1] action = output[0][0] for act in action: assert act >= -1 and act <= 1 output = sess.run([distribution.total_log_probs]) assert output[0].shape[0] == 1 def test_multicategorical_distribution(): with tf.Graph().as_default(): logits = tf.Variable(initial_value=[[0, 0]], trainable=True, dtype=tf.float32) action_masks = tf.Variable( initial_value=[[1 for _ in range(sum(DISCRETE_ACTION_SPACE))]], trainable=True, dtype=tf.float32, ) distribution = MultiCategoricalDistribution( logits, act_size=DISCRETE_ACTION_SPACE, action_masks=action_masks ) sess = tf.Session() with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) output = sess.run(distribution.sample) for _ in range(10): sample, log_probs, entropy = sess.run( [distribution.sample, distribution.log_probs, distribution.entropy] ) assert len(log_probs[0]) == sum(DISCRETE_ACTION_SPACE) # Assert action never exceeds [-1,1] assert len(sample[0]) == len(DISCRETE_ACTION_SPACE) for i, act in enumerate(sample[0]): assert act >= 0 and act <= DISCRETE_ACTION_SPACE[i] output = sess.run([distribution.total_log_probs]) assert output[0].shape[0] == 1 # Make sure entropy is correct assert entropy[0] > 3.8 # Test masks mask = [] for space in DISCRETE_ACTION_SPACE: mask.append(1) for _action_space in range(1, space): mask.append(0) for _ in range(10): sample, log_probs = sess.run( [distribution.sample, distribution.log_probs], feed_dict={action_masks: [mask]}, ) for act in sample[0]: assert act >= 0 and act <= 1 output = sess.run([distribution.total_log_probs])