from typing import Callable, List, Dict, Tuple, Optional, Union import abc from mlagents.torch_utils import torch, nn from mlagents_envs.base_env import ActionSpec, ObservationSpec from mlagents.trainers.torch.action_model import ActionModel from mlagents.trainers.torch.agent_action import AgentAction from mlagents.trainers.torch.action_log_probs import ActionLogProbs from mlagents.trainers.settings import NetworkSettings from mlagents.trainers.torch.utils import ModelUtils from mlagents.trainers.torch.decoders import ValueHeads from mlagents.trainers.torch.layers import LSTM, LinearEncoder, Initialization from mlagents.trainers.torch.encoders import VectorInput from mlagents.trainers.buffer import AgentBuffer from mlagents.trainers.trajectory import ObsUtil from mlagents.trainers.torch.attention import ( EntityEmbedding, ResidualSelfAttention, get_zero_entities_mask, ) ActivationFunction = Callable[[torch.Tensor], torch.Tensor] EncoderFunction = Callable[ [torch.Tensor, int, ActivationFunction, int, str, bool], torch.Tensor ] EPSILON = 1e-7 class NetworkBody(nn.Module): def __init__( self, observation_specs: List[ObservationSpec], network_settings: NetworkSettings, encoded_act_size: int = 0, ): super().__init__() self.normalize = network_settings.normalize self.use_lstm = network_settings.memory is not None self.h_size = network_settings.hidden_units self.m_size = ( network_settings.memory.memory_size if network_settings.memory is not None else 0 ) self.processors, self.embedding_sizes = ModelUtils.create_input_processors( observation_specs, self.h_size, network_settings.vis_encode_type, normalize=self.normalize, ) entity_num_max: int = 0 var_processors = [p for p in self.processors if isinstance(p, EntityEmbedding)] for processor in var_processors: entity_max: int = processor.entity_num_max_elements # Only adds entity max if it was known at construction if entity_max > 0: entity_num_max += entity_max if len(var_processors) > 0: if sum(self.embedding_sizes): self.x_self_encoder = LinearEncoder( sum(self.embedding_sizes), 1, self.h_size, kernel_init=Initialization.Normal, kernel_gain=(0.125 / self.h_size) ** 0.5, ) self.rsa = ResidualSelfAttention(self.h_size, entity_num_max) total_enc_size = sum(self.embedding_sizes) + self.h_size else: total_enc_size = sum(self.embedding_sizes) total_enc_size += encoded_act_size self.linear_encoder = LinearEncoder( total_enc_size, network_settings.num_layers, self.h_size ) if self.use_lstm: self.lstm = LSTM(self.h_size, self.m_size) else: self.lstm = None # type: ignore def update_normalization(self, buffer: AgentBuffer) -> None: obs = ObsUtil.from_buffer(buffer, len(self.processors)) for vec_input, enc in zip(obs, self.processors): if isinstance(enc, VectorInput): enc.update_normalization(torch.as_tensor(vec_input)) def copy_normalization(self, other_network: "NetworkBody") -> None: if self.normalize: for n1, n2 in zip(self.processors, other_network.processors): if isinstance(n1, VectorInput) and isinstance(n2, VectorInput): n1.copy_normalization(n2) @property def memory_size(self) -> int: return self.lstm.memory_size if self.use_lstm else 0 def forward( self, inputs: List[torch.Tensor], actions: Optional[torch.Tensor] = None, memories: Optional[torch.Tensor] = None, sequence_length: int = 1, ) -> Tuple[torch.Tensor, torch.Tensor]: encodes = [] var_len_processor_inputs: List[Tuple[nn.Module, torch.Tensor]] = [] for idx, processor in enumerate(self.processors): if not isinstance(processor, EntityEmbedding): # The input can be encoded without having to process other inputs obs_input = inputs[idx] processed_obs = processor(obs_input) encodes.append(processed_obs) else: var_len_processor_inputs.append((processor, inputs[idx])) if len(encodes) != 0: encoded_self = torch.cat(encodes, dim=1) input_exist = True else: input_exist = False if len(var_len_processor_inputs) > 0: # Some inputs need to be processed with a variable length encoder masks = get_zero_entities_mask([p_i[1] for p_i in var_len_processor_inputs]) embeddings: List[torch.Tensor] = [] processed_self = self.x_self_encoder(encoded_self) if input_exist else None for processor, var_len_input in var_len_processor_inputs: embeddings.append(processor(processed_self, var_len_input)) qkv = torch.cat(embeddings, dim=1) attention_embedding = self.rsa(qkv, masks) if not input_exist: encoded_self = torch.cat([attention_embedding], dim=1) input_exist = True else: encoded_self = torch.cat([encoded_self, attention_embedding], dim=1) if not input_exist: raise Exception( "The trainer was unable to process any of the provided inputs. " "Make sure the trained agents has at least one sensor attached to them." ) if actions is not None: encoded_self = torch.cat([encoded_self, actions], dim=1) encoding = self.linear_encoder(encoded_self) if self.use_lstm: # Resize to (batch, sequence length, encoding size) encoding = encoding.reshape([-1, sequence_length, self.h_size]) encoding, memories = self.lstm(encoding, memories) encoding = encoding.reshape([-1, self.m_size // 2]) return encoding, memories class Critic(abc.ABC): @abc.abstractmethod def update_normalization(self, buffer: AgentBuffer) -> None: """ Updates normalization of Actor based on the provided List of vector obs. :param vector_obs: A List of vector obs as tensors. """ pass def critic_pass( self, inputs: List[torch.Tensor], memories: Optional[torch.Tensor] = None, sequence_length: int = 1, ) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]: """ Get value outputs for the given obs. :param inputs: List of inputs as tensors. :param memories: Tensor of memories, if using memory. Otherwise, None. :returns: Dict of reward stream to output tensor for values. """ pass class ValueNetwork(nn.Module, Critic): def __init__( self, stream_names: List[str], observation_specs: List[ObservationSpec], network_settings: NetworkSettings, encoded_act_size: int = 0, outputs_per_stream: int = 1, ): # This is not a typo, we want to call __init__ of nn.Module nn.Module.__init__(self) self.network_body = NetworkBody( observation_specs, network_settings, encoded_act_size=encoded_act_size ) if network_settings.memory is not None: encoding_size = network_settings.memory.memory_size // 2 else: encoding_size = network_settings.hidden_units self.value_heads = ValueHeads(stream_names, encoding_size, outputs_per_stream) def update_normalization(self, buffer: AgentBuffer) -> None: self.network_body.update_normalization(buffer) @property def memory_size(self) -> int: return self.network_body.memory_size def critic_pass( self, inputs: List[torch.Tensor], memories: Optional[torch.Tensor] = None, sequence_length: int = 1, ) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]: value_outputs, critic_mem_out = self.forward( inputs, memories=memories, sequence_length=sequence_length ) return value_outputs, critic_mem_out def forward( self, inputs: List[torch.Tensor], actions: Optional[torch.Tensor] = None, memories: Optional[torch.Tensor] = None, sequence_length: int = 1, ) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]: encoding, memories = self.network_body( inputs, actions, memories, sequence_length ) output = self.value_heads(encoding) return output, memories class Actor(abc.ABC): @abc.abstractmethod def update_normalization(self, buffer: AgentBuffer) -> None: """ Updates normalization of Actor based on the provided List of vector obs. :param vector_obs: A List of vector obs as tensors. """ pass def get_action_and_stats( self, inputs: List[torch.Tensor], masks: Optional[torch.Tensor] = None, memories: Optional[torch.Tensor] = None, sequence_length: int = 1, ) -> Tuple[AgentAction, ActionLogProbs, torch.Tensor, torch.Tensor]: """ Returns sampled actions. If memory is enabled, return the memories as well. :param inputs: A List of inputs as tensors. :param masks: If using discrete actions, a Tensor of action masks. :param memories: If using memory, a Tensor of initial memories. :param sequence_length: If using memory, the sequence length. :return: A Tuple of AgentAction, ActionLogProbs, entropies, and memories. Memories will be None if not using memory. """ pass def get_stats( self, inputs: List[torch.Tensor], actions: AgentAction, masks: Optional[torch.Tensor] = None, memories: Optional[torch.Tensor] = None, sequence_length: int = 1, ) -> Tuple[ActionLogProbs, torch.Tensor]: """ Returns log_probs for actions and entropies. If memory is enabled, return the memories as well. :param inputs: A List of inputs as tensors. :param actions: AgentAction of actions. :param masks: If using discrete actions, a Tensor of action masks. :param memories: If using memory, a Tensor of initial memories. :param sequence_length: If using memory, the sequence length. :return: A Tuple of AgentAction, ActionLogProbs, entropies, and memories. Memories will be None if not using memory. """ pass @abc.abstractmethod def forward( self, vec_inputs: List[torch.Tensor], vis_inputs: List[torch.Tensor], var_len_inputs: List[torch.Tensor], masks: Optional[torch.Tensor] = None, memories: Optional[torch.Tensor] = None, ) -> Tuple[Union[int, torch.Tensor], ...]: """ Forward pass of the Actor for inference. This is required for export to ONNX, and the inputs and outputs of this method should not be changed without a respective change in the ONNX export code. """ pass class SimpleActor(nn.Module, Actor): def __init__( self, observation_specs: List[ObservationSpec], network_settings: NetworkSettings, action_spec: ActionSpec, conditional_sigma: bool = False, tanh_squash: bool = False, ): super().__init__() self.action_spec = action_spec self.version_number = torch.nn.Parameter( torch.Tensor([2.0]), requires_grad=False ) self.is_continuous_int_deprecated = torch.nn.Parameter( torch.Tensor([int(self.action_spec.is_continuous())]), requires_grad=False ) self.continuous_act_size_vector = torch.nn.Parameter( torch.Tensor([int(self.action_spec.continuous_size)]), requires_grad=False ) # TODO: export list of branch sizes instead of sum self.discrete_act_size_vector = torch.nn.Parameter( torch.Tensor([sum(self.action_spec.discrete_branches)]), requires_grad=False ) self.act_size_vector_deprecated = torch.nn.Parameter( torch.Tensor( [ self.action_spec.continuous_size + sum(self.action_spec.discrete_branches) ] ), requires_grad=False, ) self.network_body = NetworkBody(observation_specs, network_settings) if network_settings.memory is not None: self.encoding_size = network_settings.memory.memory_size // 2 else: self.encoding_size = network_settings.hidden_units self.memory_size_vector = torch.nn.Parameter( torch.Tensor([int(self.network_body.memory_size)]), requires_grad=False ) self.action_model = ActionModel( self.encoding_size, action_spec, conditional_sigma=conditional_sigma, tanh_squash=tanh_squash, ) @property def memory_size(self) -> int: return self.network_body.memory_size def update_normalization(self, buffer: AgentBuffer) -> None: self.network_body.update_normalization(buffer) def get_action_and_stats( self, inputs: List[torch.Tensor], masks: Optional[torch.Tensor] = None, memories: Optional[torch.Tensor] = None, sequence_length: int = 1, ) -> Tuple[AgentAction, ActionLogProbs, torch.Tensor, torch.Tensor]: encoding, memories = self.network_body( inputs, memories=memories, sequence_length=sequence_length ) action, log_probs, entropies = self.action_model(encoding, masks) return action, log_probs, entropies, memories def get_stats( self, inputs: List[torch.Tensor], actions: AgentAction, masks: Optional[torch.Tensor] = None, memories: Optional[torch.Tensor] = None, sequence_length: int = 1, ) -> Tuple[ActionLogProbs, torch.Tensor]: encoding, actor_mem_outs = self.network_body( inputs, memories=memories, sequence_length=sequence_length ) log_probs, entropies = self.action_model.evaluate(encoding, masks, actions) return log_probs, entropies def forward( self, vec_inputs: List[torch.Tensor], vis_inputs: List[torch.Tensor], var_len_inputs: List[torch.Tensor], masks: Optional[torch.Tensor] = None, memories: Optional[torch.Tensor] = None, ) -> Tuple[Union[int, torch.Tensor], ...]: """ Note: This forward() method is required for exporting to ONNX. Don't modify the inputs and outputs. At this moment, torch.onnx.export() doesn't accept None as tensor to be exported, so the size of return tuple varies with action spec. """ # This code will convert the vec and vis obs into a list of inputs for the network concatenated_vec_obs = vec_inputs[0] inputs = [] start = 0 end = 0 vis_index = 0 var_len_index = 0 for i, enc in enumerate(self.network_body.processors): if isinstance(enc, VectorInput): # This is a vec_obs vec_size = self.network_body.embedding_sizes[i] end = start + vec_size inputs.append(concatenated_vec_obs[:, start:end]) start = end elif isinstance(enc, EntityEmbedding): inputs.append(var_len_inputs[var_len_index]) var_len_index += 1 else: # visual input inputs.append(vis_inputs[vis_index]) vis_index += 1 # End of code to convert the vec and vis obs into a list of inputs for the network encoding, memories_out = self.network_body( inputs, memories=memories, sequence_length=1 ) ( cont_action_out, disc_action_out, action_out_deprecated, ) = self.action_model.get_action_out(encoding, masks) export_out = [self.version_number, self.memory_size_vector] if self.action_spec.continuous_size > 0: export_out += [cont_action_out, self.continuous_act_size_vector] if self.action_spec.discrete_size > 0: export_out += [disc_action_out, self.discrete_act_size_vector] # Only export deprecated nodes with non-hybrid action spec if self.action_spec.continuous_size == 0 or self.action_spec.discrete_size == 0: export_out += [ action_out_deprecated, self.is_continuous_int_deprecated, self.act_size_vector_deprecated, ] if self.network_body.memory_size > 0: export_out += [memories_out] return tuple(export_out) class SharedActorCritic(SimpleActor, Critic): def __init__( self, observation_specs: List[ObservationSpec], network_settings: NetworkSettings, action_spec: ActionSpec, stream_names: List[str], conditional_sigma: bool = False, tanh_squash: bool = False, ): self.use_lstm = network_settings.memory is not None super().__init__( observation_specs, network_settings, action_spec, conditional_sigma, tanh_squash, ) self.stream_names = stream_names self.value_heads = ValueHeads(stream_names, self.encoding_size) def critic_pass( self, inputs: List[torch.Tensor], memories: Optional[torch.Tensor] = None, sequence_length: int = 1, ) -> Tuple[Dict[str, torch.Tensor], torch.Tensor]: encoding, memories_out = self.network_body( inputs, memories=memories, sequence_length=sequence_length ) return self.value_heads(encoding), memories_out class GlobalSteps(nn.Module): def __init__(self): super().__init__() self.__global_step = nn.Parameter( torch.Tensor([0]).to(torch.int64), requires_grad=False ) @property def current_step(self): return int(self.__global_step.item()) @current_step.setter def current_step(self, value): self.__global_step[:] = value def increment(self, value): self.__global_step += value class LearningRate(nn.Module): def __init__(self, lr): # Todo: add learning rate decay super().__init__() self.learning_rate = torch.Tensor([lr])