import logging from typing import Optional, Any, Dict import numpy as np from mlagents.tf_utils import tf from mlagents_envs.timers import timed from mlagents.trainers.models import LearningModel, EncoderType, LearningRateSchedule from mlagents.trainers.optimizer import TFOptimizer from mlagents.trainers.buffer import AgentBuffer logger = logging.getLogger("mlagents.trainers") class PPOOptimizer(TFOptimizer): def __init__(self, policy, trainer_params): """ Takes a Unity environment and model-specific hyper-parameters and returns the appropriate PPO agent model for the environment. :param brain: brain parameters used to generate specific network graph. :param lr: Learning rate. :param lr_schedule: Learning rate decay schedule. :param h_size: Size of hidden layers :param epsilon: Value for policy-divergence threshold. :param beta: Strength of entropy regularization. :param max_step: Total number of training steps. :param normalize: Whether to normalize vector observation input. :param use_recurrent: Whether to use an LSTM layer in the network. :param num_layers Number of hidden layers between encoded input and policy & value layers :param m_size: Size of brain memory. :param seed: Seed to use for initialization of model. :param stream_names: List of names of value streams. Usually, a list of the Reward Signals being used. :return: a sub-class of PPOAgent tailored to the environment. """ with policy.graph.as_default(): with tf.variable_scope("optimizer/"): super().__init__(policy, trainer_params) lr = float(trainer_params["learning_rate"]) lr_schedule = LearningRateSchedule( trainer_params.get("learning_rate_schedule", "linear") ) h_size = int(trainer_params["hidden_units"]) epsilon = float(trainer_params["epsilon"]) beta = float(trainer_params["beta"]) max_step = float(trainer_params["max_steps"]) num_layers = int(trainer_params["num_layers"]) vis_encode_type = EncoderType( trainer_params.get("vis_encode_type", "simple") ) self.stream_names = self.reward_signals.keys() self.optimizer: Optional[tf.train.AdamOptimizer] = None self.grads = None self.update_batch: Optional[tf.Operation] = None self.stats_name_to_update_name = { "Losses/Value Loss": "value_loss", "Losses/Policy Loss": "policy_loss", } if self.policy.use_recurrent: self.m_size = self.policy.m_size self.memory_in = tf.placeholder( shape=[None, self.m_size], dtype=tf.float32, name="recurrent_value_in", ) if num_layers < 1: num_layers = 1 if policy.use_continuous_act: self.create_cc_critic(h_size, num_layers, vis_encode_type) else: self.create_dc_critic(h_size, num_layers, vis_encode_type) self.learning_rate = LearningModel.create_learning_rate( lr_schedule, lr, self.policy.global_step, max_step ) self.create_losses( self.policy.log_probs, self.old_log_probs, self.value_heads, self.policy.entropy, beta, epsilon, lr, max_step, ) self.create_ppo_optimizer() self.update_dict.update( { "value_loss": self.value_loss, "policy_loss": self.abs_policy_loss, "update_batch": self.update_batch, } ) # Add some stuff to inference dict from optimizer self.policy.inference_dict["learning_rate"] = self.learning_rate def create_cc_critic( self, h_size: int, num_layers: int, vis_encode_type: EncoderType ) -> None: """ Creates Continuous control actor-critic model. :param h_size: Size of hidden linear layers. :param num_layers: Number of hidden linear layers. """ hidden_stream = LearningModel.create_observation_streams( self.policy.visual_in, self.policy.processed_vector_in, 1, h_size, num_layers, vis_encode_type, )[0] if self.policy.use_recurrent: hidden_value, memory_value_out = LearningModel.create_recurrent_encoder( hidden_stream, self.memory_in, self.policy.sequence_length_ph, name="lstm_value", ) self.memory_out = memory_value_out else: hidden_value = hidden_stream self.value_heads, self.value = LearningModel.create_value_heads( self.stream_names, hidden_value ) self.all_old_log_probs = tf.placeholder( shape=[None, 1], dtype=tf.float32, name="old_probabilities" ) self.old_log_probs = tf.reduce_sum( (tf.identity(self.all_old_log_probs)), axis=1, keepdims=True ) def create_dc_critic( self, h_size: int, num_layers: int, vis_encode_type: EncoderType ) -> None: """ Creates Discrete control actor-critic model. :param h_size: Size of hidden linear layers. :param num_layers: Number of hidden linear layers. """ hidden_stream = LearningModel.create_observation_streams( self.policy.visual_in, self.policy.processed_vector_in, 1, h_size, num_layers, vis_encode_type, )[0] if self.policy.use_recurrent: hidden_value, memory_value_out = LearningModel.create_recurrent_encoder( hidden_stream, self.memory_in, self.policy.sequence_length_ph, name="lstm_value", ) self.memory_out = memory_value_out else: hidden_value = hidden_stream self.value_heads, self.value = LearningModel.create_value_heads( self.stream_names, hidden_value ) self.all_old_log_probs = tf.placeholder( shape=[None, sum(self.policy.act_size)], dtype=tf.float32, name="old_probabilities", ) _, _, old_normalized_logits = LearningModel.create_discrete_action_masking_layer( self.all_old_log_probs, self.policy.action_masks, self.policy.act_size ) action_idx = [0] + list(np.cumsum(self.policy.act_size)) self.old_log_probs = tf.reduce_sum( ( tf.stack( [ -tf.nn.softmax_cross_entropy_with_logits_v2( labels=self.policy.action_oh[ :, action_idx[i] : action_idx[i + 1] ], logits=old_normalized_logits[ :, action_idx[i] : action_idx[i + 1] ], ) for i in range(len(self.policy.act_size)) ], axis=1, ) ), axis=1, keepdims=True, ) def create_losses( self, probs, old_probs, value_heads, entropy, beta, epsilon, lr, max_step ): """ Creates training-specific Tensorflow ops for PPO models. :param probs: Current policy probabilities :param old_probs: Past policy probabilities :param value_heads: Value estimate tensors from each value stream :param beta: Entropy regularization strength :param entropy: Current policy entropy :param epsilon: Value for policy-divergence threshold :param lr: Learning rate :param max_step: Total number of training steps. """ self.returns_holders = {} self.old_values = {} for name in value_heads.keys(): returns_holder = tf.placeholder( shape=[None], dtype=tf.float32, name="{}_returns".format(name) ) old_value = tf.placeholder( shape=[None], dtype=tf.float32, name="{}_value_estimate".format(name) ) self.returns_holders[name] = returns_holder self.old_values[name] = old_value self.advantage = tf.placeholder( shape=[None], dtype=tf.float32, name="advantages" ) advantage = tf.expand_dims(self.advantage, -1) decay_epsilon = tf.train.polynomial_decay( epsilon, self.policy.global_step, max_step, 0.1, power=1.0 ) decay_beta = tf.train.polynomial_decay( beta, self.policy.global_step, max_step, 1e-5, power=1.0 ) value_losses = [] for name, head in value_heads.items(): clipped_value_estimate = self.old_values[name] + tf.clip_by_value( tf.reduce_sum(head, axis=1) - self.old_values[name], -decay_epsilon, decay_epsilon, ) v_opt_a = tf.squared_difference( self.returns_holders[name], tf.reduce_sum(head, axis=1) ) v_opt_b = tf.squared_difference( self.returns_holders[name], clipped_value_estimate ) value_loss = tf.reduce_mean( tf.dynamic_partition(tf.maximum(v_opt_a, v_opt_b), self.policy.mask, 2)[ 1 ] ) value_losses.append(value_loss) self.value_loss = tf.reduce_mean(value_losses) r_theta = tf.exp(probs - old_probs) p_opt_a = r_theta * advantage p_opt_b = ( tf.clip_by_value(r_theta, 1.0 - decay_epsilon, 1.0 + decay_epsilon) * advantage ) self.policy_loss = -tf.reduce_mean( tf.dynamic_partition(tf.minimum(p_opt_a, p_opt_b), self.policy.mask, 2)[1] ) # For cleaner stats reporting self.abs_policy_loss = tf.abs(self.policy_loss) self.loss = ( self.policy_loss + 0.5 * self.value_loss - decay_beta * tf.reduce_mean(tf.dynamic_partition(entropy, self.policy.mask, 2)[1]) ) def create_ppo_optimizer(self): self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate) self.grads = self.optimizer.compute_gradients(self.loss) self.update_batch = self.optimizer.minimize(self.loss) @timed def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]: """ Performs update on model. :param mini_batch: Batch of experiences. :param num_sequences: Number of sequences to process. :return: Results of update. """ feed_dict = self.construct_feed_dict(batch, num_sequences) stats_needed = self.stats_name_to_update_name update_stats = {} # Collect feed dicts for all reward signals. for _, reward_signal in self.reward_signals.items(): feed_dict.update( reward_signal.prepare_update(self.policy, batch, num_sequences) ) stats_needed.update(reward_signal.stats_name_to_update_name) update_vals = self._execute_model(feed_dict, self.update_dict) for stat_name, update_name in stats_needed.items(): update_stats[stat_name] = update_vals[update_name] return update_stats def construct_feed_dict( self, mini_batch: AgentBuffer, num_sequences: int ) -> Dict[tf.Tensor, Any]: feed_dict = { self.policy.batch_size_ph: num_sequences, self.policy.sequence_length_ph: len(mini_batch["advantages"]) / num_sequences, # TODO: Fix LSTM self.policy.mask_input: mini_batch["masks"], self.advantage: mini_batch["advantages"], self.all_old_log_probs: mini_batch["action_probs"], } for name in self.reward_signals: feed_dict[self.returns_holders[name]] = mini_batch[ "{}_returns".format(name) ] feed_dict[self.old_values[name]] = mini_batch[ "{}_value_estimates".format(name) ] if "actions_pre" in mini_batch: feed_dict[self.policy.output_pre] = mini_batch["actions_pre"] else: feed_dict[self.policy.action_holder] = mini_batch["actions"] if self.policy.use_recurrent: feed_dict[self.policy.prev_action] = mini_batch["prev_action"] feed_dict[self.policy.action_masks] = mini_batch["action_mask"] if "vector_obs" in mini_batch: feed_dict[self.policy.vector_in] = mini_batch["vector_obs"] if self.policy.vis_obs_size > 0: for i, _ in enumerate(self.policy.visual_in): feed_dict[self.policy.visual_in[i]] = mini_batch["visual_obs%d" % i] if self.policy.use_recurrent: feed_dict[self.policy.memory_in] = self._make_zero_mem( self.policy.m_size, mini_batch.num_experiences ) feed_dict[self.memory_in] = self._make_zero_mem( self.m_size, mini_batch.num_experiences ) return feed_dict