using System; using System.Collections.Generic; using System.Linq; using Google.Protobuf; using Unity.MLAgents.CommunicatorObjects; using UnityEngine; using System.Runtime.CompilerServices; using Unity.MLAgents.Sensors; using Unity.MLAgents.Demonstrations; using Unity.MLAgents.Policies; [assembly: InternalsVisibleTo("Unity.ML-Agents.Editor")] [assembly: InternalsVisibleTo("Unity.ML-Agents.Editor.Tests")] namespace Unity.MLAgents { internal static class GrpcExtensions { #region AgentInfo /// /// Converts a AgentInfo to a protobuf generated AgentInfoActionPairProto /// /// The protobuf version of the AgentInfoActionPairProto. public static AgentInfoActionPairProto ToInfoActionPairProto(this AgentInfo ai) { var agentInfoProto = ai.ToAgentInfoProto(); var agentActionProto = new AgentActionProto { VectorActions = { ai.storedVectorActions } }; return new AgentInfoActionPairProto { AgentInfo = agentInfoProto, ActionInfo = agentActionProto }; } /// /// Converts a AgentInfo to a protobuf generated AgentInfoProto /// /// The protobuf version of the AgentInfo. public static AgentInfoProto ToAgentInfoProto(this AgentInfo ai) { var agentInfoProto = new AgentInfoProto { Reward = ai.reward, MaxStepReached = ai.maxStepReached, Done = ai.done, Id = ai.episodeId, }; if (ai.discreteActionMasks != null) { agentInfoProto.ActionMask.AddRange(ai.discreteActionMasks); } return agentInfoProto; } /// /// Get summaries for the observations in the AgentInfo part of the AgentInfoActionPairProto. /// /// /// public static List GetObservationSummaries(this AgentInfoActionPairProto infoActionPair) { List summariesOut = new List(); var agentInfo = infoActionPair.AgentInfo; foreach (var obs in agentInfo.Observations) { var summary = new ObservationSummary(); summary.shape = obs.Shape.ToArray(); summariesOut.Add(summary); } return summariesOut; } #endregion #region BrainParameters /// /// Converts a Brain into to a Protobuf BrainInfoProto so it can be sent /// /// The BrainInfoProto generated. /// The instance of BrainParameter to extend. /// The name of the brain. /// Whether or not the Brain is training. public static BrainParametersProto ToProto(this BrainParameters bp, string name, bool isTraining) { var brainParametersProto = new BrainParametersProto { VectorActionSize = { bp.VectorActionSize }, VectorActionSpaceType = (SpaceTypeProto)bp.VectorActionSpaceType, BrainName = name, IsTraining = isTraining }; brainParametersProto.VectorActionDescriptions.AddRange(bp.VectorActionDescriptions); return brainParametersProto; } /// /// Convert a BrainParametersProto to a BrainParameters struct. /// /// An instance of a brain parameters protobuf object. /// A BrainParameters struct. public static BrainParameters ToBrainParameters(this BrainParametersProto bpp) { var bp = new BrainParameters { VectorActionSize = bpp.VectorActionSize.ToArray(), VectorActionDescriptions = bpp.VectorActionDescriptions.ToArray(), VectorActionSpaceType = (SpaceType)bpp.VectorActionSpaceType }; return bp; } #endregion #region DemonstrationMetaData /// /// Convert metadata object to proto object. /// public static DemonstrationMetaProto ToProto(this DemonstrationMetaData dm) { var demoProto = new DemonstrationMetaProto { ApiVersion = DemonstrationMetaData.ApiVersion, MeanReward = dm.meanReward, NumberSteps = dm.numberSteps, NumberEpisodes = dm.numberEpisodes, DemonstrationName = dm.demonstrationName }; return demoProto; } /// /// Initialize metadata values based on proto object. /// public static DemonstrationMetaData ToDemonstrationMetaData(this DemonstrationMetaProto demoProto) { var dm = new DemonstrationMetaData { numberEpisodes = demoProto.NumberEpisodes, numberSteps = demoProto.NumberSteps, meanReward = demoProto.MeanReward, demonstrationName = demoProto.DemonstrationName }; if (demoProto.ApiVersion != DemonstrationMetaData.ApiVersion) { throw new Exception("API versions of demonstration are incompatible."); } return dm; } #endregion public static UnityRLInitParameters ToUnityRLInitParameters(this UnityRLInitializationInputProto inputProto) { return new UnityRLInitParameters { seed = inputProto.Seed, pythonLibraryVersion = inputProto.PackageVersion, pythonCommunicationVersion = inputProto.CommunicationVersion, TrainerCapabilities = inputProto.Capabilities.ToRLCapabilities() }; } #region AgentAction public static AgentAction ToAgentAction(this AgentActionProto aap) { return new AgentAction { vectorActions = aap.VectorActions.ToArray() }; } public static List ToAgentActionList(this UnityRLInputProto.Types.ListAgentActionProto proto) { var agentActions = new List(proto.Value.Count); foreach (var ap in proto.Value) { agentActions.Add(ap.ToAgentAction()); } return agentActions; } #endregion #region Observations public static ObservationProto ToProto(this Observation obs) { ObservationProto obsProto = null; if (obs.CompressedData != null) { // Make sure that uncompressed data is empty if (obs.FloatData.Count != 0) { Debug.LogWarning("Observation has both compressed and uncompressed data set. Using compressed."); } obsProto = new ObservationProto { CompressedData = ByteString.CopyFrom(obs.CompressedData), CompressionType = (CompressionTypeProto)obs.CompressionType, }; } else { var floatDataProto = new ObservationProto.Types.FloatData { Data = { obs.FloatData }, }; obsProto = new ObservationProto { FloatData = floatDataProto, CompressionType = (CompressionTypeProto)obs.CompressionType, }; } obsProto.Shape.AddRange(obs.Shape); return obsProto; } /// /// Generate an ObservationProto for the sensor using the provided ObservationWriter. /// This is equivalent to producing an Observation and calling Observation.ToProto(), /// but avoid some intermediate memory allocations. /// /// /// /// public static ObservationProto GetObservationProto(this ISensor sensor, ObservationWriter observationWriter) { var shape = sensor.GetObservationShape(); ObservationProto observationProto = null; if (sensor.GetCompressionType() == SensorCompressionType.None) { var numFloats = sensor.ObservationSize(); var floatDataProto = new ObservationProto.Types.FloatData(); // Resize the float array // TODO upgrade protobuf versions so that we can set the Capacity directly - see https://github.com/protocolbuffers/protobuf/pull/6530 for (var i = 0; i < numFloats; i++) { floatDataProto.Data.Add(0.0f); } observationWriter.SetTarget(floatDataProto.Data, sensor.GetObservationShape(), 0); sensor.Write(observationWriter); observationProto = new ObservationProto { FloatData = floatDataProto, CompressionType = (CompressionTypeProto)SensorCompressionType.None, }; } else { var compressedObs = sensor.GetCompressedObservation(); if (compressedObs == null) { throw new UnityAgentsException( $"GetCompressedObservation() returned null data for sensor named {sensor.GetName()}. " + "You must return a byte[]. If you don't want to use compressed observations, " + "return SensorCompressionType.None from GetCompressionType()." ); } observationProto = new ObservationProto { CompressedData = ByteString.CopyFrom(compressedObs), CompressionType = (CompressionTypeProto)sensor.GetCompressionType(), }; } observationProto.Shape.AddRange(shape); return observationProto; } #endregion public static UnityRLCapabilities ToRLCapabilities(this UnityRLCapabilitiesProto proto) { return new UnityRLCapabilities { m_BaseRLCapabilities = proto.BaseRLCapabilities }; } public static UnityRLCapabilitiesProto ToProto(this UnityRLCapabilities rlCaps) { return new UnityRLCapabilitiesProto { BaseRLCapabilities = rlCaps.m_BaseRLCapabilities }; } } }