import random from typing import Dict, List, Any, Tuple import numpy as np from mlagents_envs.base_env import ( BaseEnv, AgentGroupSpec, BatchedStepResult, ActionType, ) from mlagents_envs.tests.test_rpc_utils import proto_from_batched_step_result_and_action from mlagents_envs.communicator_objects.agent_info_action_pair_pb2 import ( AgentInfoActionPairProto, ) OBS_SIZE = 1 VIS_OBS_SIZE = (20, 20, 3) STEP_SIZE = 0.1 TIME_PENALTY = 0.001 MIN_STEPS = int(1.0 / STEP_SIZE) + 1 SUCCESS_REWARD = 1.0 + MIN_STEPS * TIME_PENALTY def clamp(x, min_val, max_val): return max(min_val, min(x, max_val)) class Simple1DEnvironment(BaseEnv): """ Very simple "game" - the agent has a position on [-1, 1], gets a reward of 1 if it reaches 1, and a reward of -1 if it reaches -1. The position is incremented by the action amount (clamped to [-step_size, step_size]). """ def __init__( self, brain_names, use_discrete, step_size=STEP_SIZE, num_visual=0, num_vector=1, vis_obs_size=VIS_OBS_SIZE, vec_obs_size=OBS_SIZE, ): super().__init__() self.discrete = use_discrete self.num_visual = num_visual self.num_vector = num_vector self.vis_obs_size = vis_obs_size self.vec_obs_size = vec_obs_size action_type = ActionType.DISCRETE if use_discrete else ActionType.CONTINUOUS self.group_spec = AgentGroupSpec( self._make_obs_spec(), action_type, (2,) if use_discrete else 1 ) self.names = brain_names self.position: Dict[str, float] = {} self.step_count: Dict[str, float] = {} self.random = random.Random(str(self.group_spec)) self.goal: Dict[str, int] = {} self.action = {} self.rewards: Dict[str, float] = {} self.final_rewards: Dict[str, List[float]] = {} self.step_result: Dict[str, BatchedStepResult] = {} self.agent_id: Dict[str, int] = {} self.step_size = step_size # defines the difficulty of the test for name in self.names: self.agent_id[name] = 0 self.goal[name] = self.random.choice([-1, 1]) self.rewards[name] = 0 self.final_rewards[name] = [] self._reset_agent(name) self.action[name] = None self.step_result[name] = None def _make_obs_spec(self) -> List[Any]: obs_spec: List[Any] = [] for _ in range(self.num_vector): obs_spec.append((self.vec_obs_size,)) for _ in range(self.num_visual): obs_spec.append(self.vis_obs_size) return obs_spec def _make_obs(self, value: float) -> List[np.ndarray]: obs = [] for _ in range(self.num_vector): obs.append(np.ones((1, self.vec_obs_size), dtype=np.float32) * value) for _ in range(self.num_visual): obs.append(np.ones((1,) + self.vis_obs_size, dtype=np.float32) * value) return obs def get_agent_groups(self): return self.names def get_agent_group_spec(self, name): return self.group_spec def set_action_for_agent(self, name, id, data): pass def set_actions(self, name, data): self.action[name] = data def get_step_result(self, name): return self.step_result[name] def _take_action(self, name: str) -> bool: if self.discrete: act = self.action[name][0][0] delta = 1 if act else -1 else: delta = self.action[name][0][0] delta = clamp(delta, -self.step_size, self.step_size) self.position[name] += delta self.position[name] = clamp(self.position[name], -1, 1) self.step_count[name] += 1 done = self.position[name] >= 1.0 or self.position[name] <= -1.0 return done def _compute_reward(self, name: str, done: bool) -> float: if done: reward = SUCCESS_REWARD * self.position[name] * self.goal[name] else: reward = -TIME_PENALTY return reward def _make_batched_step( self, name: str, done: bool, reward: float ) -> BatchedStepResult: m_vector_obs = self._make_obs(self.goal[name]) m_reward = np.array([reward], dtype=np.float32) m_done = np.array([done], dtype=np.bool) m_agent_id = np.array([self.agent_id[name]], dtype=np.int32) action_mask = self._generate_mask() if done: self._reset_agent(name) new_vector_obs = self._make_obs(self.goal[name]) ( m_vector_obs, m_reward, m_done, m_agent_id, action_mask, ) = self._construct_reset_step( m_vector_obs, new_vector_obs, m_reward, m_done, m_agent_id, action_mask, name, ) return BatchedStepResult( m_vector_obs, m_reward, m_done, np.zeros(m_done.shape, dtype=bool), m_agent_id, action_mask, ) def _construct_reset_step( self, vector_obs: List[np.ndarray], new_vector_obs: List[np.ndarray], reward: np.ndarray, done: np.ndarray, agent_id: np.ndarray, action_mask: List[np.ndarray], name: str, ) -> Tuple[List[np.ndarray], np.ndarray, np.ndarray, np.ndarray, np.ndarray]: new_reward = np.array([0.0], dtype=np.float32) new_done = np.array([False], dtype=np.bool) new_agent_id = np.array([self.agent_id[name]], dtype=np.int32) new_action_mask = self._generate_mask() m_vector_obs = [ np.concatenate((old, new), axis=0) for old, new in zip(vector_obs, new_vector_obs) ] m_reward = np.concatenate((reward, new_reward), axis=0) m_done = np.concatenate((done, new_done), axis=0) m_agent_id = np.concatenate((agent_id, new_agent_id), axis=0) if action_mask is not None: action_mask = [ np.concatenate((old, new), axis=0) for old, new in zip(action_mask, new_action_mask) ] return m_vector_obs, m_reward, m_done, m_agent_id, action_mask def step(self) -> None: assert all(action is not None for action in self.action.values()) for name in self.names: done = self._take_action(name) reward = self._compute_reward(name, done) self.rewards[name] += reward self.step_result[name] = self._make_batched_step(name, done, reward) def _generate_mask(self): if self.discrete: # LL-Python API will return an empty dim if there is only 1 agent. ndmask = np.array(2 * [False], dtype=np.bool) ndmask = np.expand_dims(ndmask, axis=0) action_mask = [ndmask] else: action_mask = None return action_mask def _reset_agent(self, name): self.goal[name] = self.random.choice([-1, 1]) self.position[name] = 0.0 self.step_count[name] = 0 self.final_rewards[name].append(self.rewards[name]) self.rewards[name] = 0 self.agent_id[name] = self.agent_id[name] + 1 def reset(self) -> None: # type: ignore for name in self.names: self._reset_agent(name) self.step_result[name] = self._make_batched_step(name, False, 0.0) @property def reset_parameters(self) -> Dict[str, str]: return {} def close(self): pass class Memory1DEnvironment(Simple1DEnvironment): def __init__(self, brain_names, use_discrete, step_size=0.2): super().__init__(brain_names, use_discrete, step_size=step_size) # Number of steps to reveal the goal for. Lower is harder. Should be # less than 1/step_size to force agent to use memory self.num_show_steps = 2 def _make_batched_step( self, name: str, done: bool, reward: float ) -> BatchedStepResult: recurrent_obs_val = ( self.goal[name] if self.step_count[name] <= self.num_show_steps else 0 ) m_vector_obs = self._make_obs(recurrent_obs_val) m_reward = np.array([reward], dtype=np.float32) m_done = np.array([done], dtype=np.bool) m_agent_id = np.array([self.agent_id[name]], dtype=np.int32) action_mask = self._generate_mask() if done: self._reset_agent(name) recurrent_obs_val = ( self.goal[name] if self.step_count[name] <= self.num_show_steps else 0 ) new_vector_obs = self._make_obs(recurrent_obs_val) ( m_vector_obs, m_reward, m_done, m_agent_id, action_mask, ) = self._construct_reset_step( m_vector_obs, new_vector_obs, m_reward, m_done, m_agent_id, action_mask, name, ) return BatchedStepResult( m_vector_obs, m_reward, m_done, np.zeros(m_done.shape, dtype=bool), m_agent_id, action_mask, ) class Record1DEnvironment(Simple1DEnvironment): def __init__( self, brain_names, use_discrete, step_size=0.2, num_visual=0, num_vector=1, n_demos=30, ): super().__init__( brain_names, use_discrete, step_size=step_size, num_visual=num_visual, num_vector=num_vector, ) self.demonstration_protos: Dict[str, List[AgentInfoActionPairProto]] = {} self.n_demos = n_demos for name in self.names: self.demonstration_protos[name] = [] def step(self) -> None: super().step() for name in self.names: self.demonstration_protos[ name ] += proto_from_batched_step_result_and_action( self.step_result[name], self.action[name] ) self.demonstration_protos[name] = self.demonstration_protos[name][ -self.n_demos : ] def solve(self) -> None: self.reset() for _ in range(self.n_demos): for name in self.names: if self.discrete: self.action[name] = [[1]] if self.goal[name] > 0 else [[0]] else: self.action[name] = [[float(self.goal[name])]] self.step()