using System.Collections.Generic; using Barracuda; using MLAgents.Sensor; namespace MLAgents.InferenceBrain { /// /// Mapping between Tensor names and generators. /// A TensorGenerator implements a Dictionary of strings (node names) to an Action. /// The Action take as argument the tensor, the current batch size and a Dictionary of /// Agent to AgentInfo corresponding to the current batch. /// Each Generator reshapes and fills the data of the tensor based of the data of the batch. /// When the TensorProxy is an Input to the model, the shape of the Tensor will be modified /// depending on the current batch size and the data of the Tensor will be filled using the /// Dictionary of Agent to AgentInfo. /// When the TensorProxy is an Output of the model, only the shape of the Tensor will be /// modified using the current batch size. The data will be pre-filled with zeros. /// internal class TensorGenerator { public interface IGenerator { /// /// Modifies the data inside a Tensor according to the information contained in the /// AgentInfos contained in the current batch. /// /// The tensor the data and shape will be modified /// The number of agents present in the current batch /// List of AgentInfos containing the /// information that will be used to populate the tensor's data void Generate( TensorProxy tensorProxy, int batchSize, IEnumerable infos); } readonly Dictionary m_Dict = new Dictionary(); /// /// Returns a new TensorGenerators object. /// /// The seed the Generators will be initialized with. /// Tensor allocator /// Dictionary of AgentInfo.id to memory for use in the inference model. /// public TensorGenerator( int seed, ITensorAllocator allocator, Dictionary> memories, object barracudaModel = null) { // Generator for Inputs m_Dict[TensorNames.BatchSizePlaceholder] = new BatchSizeGenerator(allocator); m_Dict[TensorNames.SequenceLengthPlaceholder] = new SequenceLengthGenerator(allocator); m_Dict[TensorNames.RecurrentInPlaceholder] = new RecurrentInputGenerator(allocator, memories); if (barracudaModel != null) { var model = (Model)barracudaModel; for (var i = 0; i < model.memories.Count; i++) { m_Dict[model.memories[i].input] = new BarracudaRecurrentInputGenerator(i, allocator, memories); } } m_Dict[TensorNames.PreviousActionPlaceholder] = new PreviousActionInputGenerator(allocator); m_Dict[TensorNames.ActionMaskPlaceholder] = new ActionMaskInputGenerator(allocator); m_Dict[TensorNames.RandomNormalEpsilonPlaceholder] = new RandomNormalInputGenerator(seed, allocator); // Generators for Outputs m_Dict[TensorNames.ActionOutput] = new BiDimensionalOutputGenerator(allocator); m_Dict[TensorNames.RecurrentOutput] = new BiDimensionalOutputGenerator(allocator); m_Dict[TensorNames.ValueEstimateOutput] = new BiDimensionalOutputGenerator(allocator); } public void InitializeObservations(List sensors, ITensorAllocator allocator) { // Loop through the sensors on a representative agent. // For vector observations, add the index to the (single) VectorObservationGenerator // For visual observations, make a VisualObservationInputGenerator var visIndex = 0; VectorObservationGenerator vecObsGen = null; for (var sensorIndex = 0; sensorIndex < sensors.Count; sensorIndex++) { var sensor = sensors[sensorIndex]; var shape = sensor.GetObservationShape(); // TODO generalize - we currently only have vector or visual, but can't handle "2D" observations var isVectorSensor = (shape.Length == 1); if (isVectorSensor) { if (vecObsGen == null) { vecObsGen = new VectorObservationGenerator(allocator); } vecObsGen.AddSensorIndex(sensorIndex); } else { m_Dict[TensorNames.VisualObservationPlaceholderPrefix + visIndex] = new VisualObservationInputGenerator(sensorIndex, allocator); visIndex++; } } if (vecObsGen != null) { m_Dict[TensorNames.VectorObservationPlacholder] = vecObsGen; } } /// /// Populates the data of the tensor inputs given the data contained in the current batch /// of agents. /// /// Enumerable of tensors that will be modified. /// The number of agents present in the current batch /// /// List of Agents that contains the /// data that will be used to modify the tensors /// One of the tensor does not have an /// associated generator. public void GenerateTensors( IEnumerable tensors, int currentBatchSize, IEnumerable infos) { foreach (var tensor in tensors) { if (!m_Dict.ContainsKey(tensor.name)) { throw new UnityAgentsException( $"Unknown tensorProxy expected as input : {tensor.name}"); } m_Dict[tensor.name].Generate(tensor, currentBatchSize, infos); } } } }