using System; using System.Collections.Generic; using System.Linq; using Google.Protobuf; using Google.Protobuf.Collections; using MLAgents.CommunicatorObjects; using MLAgents.Sensor; using UnityEngine; using System.Runtime.CompilerServices; [assembly: InternalsVisibleTo("Unity.ML-Agents.Editor")] [assembly: InternalsVisibleTo("Unity.ML-Agents.Editor.Tests")] namespace MLAgents { internal static class GrpcExtensions { /// /// Converts a AgentInfo to a protobuf generated AgentInfoActionPairProto /// /// The protobuf version of the AgentInfoActionPairProto. public static AgentInfoActionPairProto ToInfoActionPairProto(this AgentInfo ai) { var agentInfoProto = ai.ToAgentInfoProto(); var agentActionProto = new AgentActionProto { VectorActions = { ai.storedVectorActions } }; return new AgentInfoActionPairProto { AgentInfo = agentInfoProto, ActionInfo = agentActionProto }; } /// /// Converts a AgentInfo to a protobuf generated AgentInfoProto /// /// The protobuf version of the AgentInfo. public static AgentInfoProto ToAgentInfoProto(this AgentInfo ai) { var agentInfoProto = new AgentInfoProto { Reward = ai.reward, MaxStepReached = ai.maxStepReached, Done = ai.done, Id = ai.episodeId, }; if (ai.actionMasks != null) { agentInfoProto.ActionMask.AddRange(ai.actionMasks); } return agentInfoProto; } /// /// Converts a Brain into to a Protobuf BrainInfoProto so it can be sent /// /// The BrainInfoProto generated. /// The instance of BrainParameter to extend. /// The name of the brain. /// Whether or not the Brain is training. public static BrainParametersProto ToProto(this BrainParameters bp, string name, bool isTraining) { var brainParametersProto = new BrainParametersProto { VectorActionSize = { bp.vectorActionSize }, VectorActionSpaceType = (SpaceTypeProto)bp.vectorActionSpaceType, BrainName = name, IsTraining = isTraining }; brainParametersProto.VectorActionDescriptions.AddRange(bp.vectorActionDescriptions); return brainParametersProto; } /// /// Convert metadata object to proto object. /// public static DemonstrationMetaProto ToProto(this DemonstrationMetaData dm) { var demoProto = new DemonstrationMetaProto { ApiVersion = DemonstrationMetaData.ApiVersion, MeanReward = dm.meanReward, NumberSteps = dm.numberExperiences, NumberEpisodes = dm.numberEpisodes, DemonstrationName = dm.demonstrationName }; return demoProto; } /// /// Initialize metadata values based on proto object. /// public static DemonstrationMetaData ToDemonstrationMetaData(this DemonstrationMetaProto demoProto) { var dm = new DemonstrationMetaData { numberEpisodes = demoProto.NumberEpisodes, numberExperiences = demoProto.NumberSteps, meanReward = demoProto.MeanReward, demonstrationName = demoProto.DemonstrationName }; if (demoProto.ApiVersion != DemonstrationMetaData.ApiVersion) { throw new Exception("API versions of demonstration are incompatible."); } return dm; } /// /// Convert a BrainParametersProto to a BrainParameters struct. /// /// An instance of a brain parameters protobuf object. /// A BrainParameters struct. public static BrainParameters ToBrainParameters(this BrainParametersProto bpp) { var bp = new BrainParameters { vectorActionSize = bpp.VectorActionSize.ToArray(), vectorActionDescriptions = bpp.VectorActionDescriptions.ToArray(), vectorActionSpaceType = (SpaceType)bpp.VectorActionSpaceType }; return bp; } public static UnityRLInitParameters ToUnityRLInitParameters(this UnityRLInitializationInputProto inputProto) { return new UnityRLInitParameters { seed = inputProto.Seed }; } public static AgentAction ToAgentAction(this AgentActionProto aap) { return new AgentAction { vectorActions = aap.VectorActions.ToArray() }; } public static List ToAgentActionList(this UnityRLInputProto.Types.ListAgentActionProto proto) { var agentActions = new List(proto.Value.Count); foreach (var ap in proto.Value) { agentActions.Add(ap.ToAgentAction()); } return agentActions; } public static ObservationProto ToProto(this Observation obs) { ObservationProto obsProto = null; if (obs.CompressedData != null) { // Make sure that uncompressed data is empty if (obs.FloatData.Count != 0) { Debug.LogWarning("Observation has both compressed and uncompressed data set. Using compressed."); } obsProto = new ObservationProto { CompressedData = ByteString.CopyFrom(obs.CompressedData), CompressionType = (CompressionTypeProto)obs.CompressionType, }; } else { var floatDataProto = new ObservationProto.Types.FloatData { Data = { obs.FloatData }, }; obsProto = new ObservationProto { FloatData = floatDataProto, CompressionType = (CompressionTypeProto)obs.CompressionType, }; } obsProto.Shape.AddRange(obs.Shape); return obsProto; } /// /// Generate an ObservationProto for the sensor using the provided WriteAdapter. /// This is equivalent to producing an Observation and calling Observation.ToProto(), /// but avoid some intermediate memory allocations. /// /// /// /// public static ObservationProto GetObservationProto(this ISensor sensor, WriteAdapter writeAdapter) { var shape = sensor.GetObservationShape(); ObservationProto observationProto = null; if (sensor.GetCompressionType() == SensorCompressionType.None) { var numFloats = sensor.ObservationSize(); var floatDataProto = new ObservationProto.Types.FloatData(); // Resize the float array // TODO upgrade protobuf versions so that we can set the Capacity directly - see https://github.com/protocolbuffers/protobuf/pull/6530 for (var i = 0; i < numFloats; i++) { floatDataProto.Data.Add(0.0f); } writeAdapter.SetTarget(floatDataProto.Data, sensor.GetObservationShape(), 0); sensor.Write(writeAdapter); observationProto = new ObservationProto { FloatData = floatDataProto, CompressionType = (CompressionTypeProto)SensorCompressionType.None, }; } else { observationProto = new ObservationProto { CompressedData = ByteString.CopyFrom(sensor.GetCompressedObservation()), CompressionType = (CompressionTypeProto)sensor.GetCompressionType(), }; } observationProto.Shape.AddRange(shape); return observationProto; } } }