# # Unity ML-Agents Toolkit from typing import Dict, Any, Optional, List import os import attr from mlagents.trainers.training_status import GlobalTrainingStatus, StatusType from mlagents_envs.logging_util import get_logger logger = get_logger(__name__) @attr.s(auto_attribs=True) class ModelCheckpoint: steps: int file_path: str reward: Optional[float] creation_time: float class ModelCheckpointManager: @staticmethod def get_checkpoints(behavior_name: str) -> List[Dict[str, Any]]: checkpoint_list = GlobalTrainingStatus.get_parameter_state( behavior_name, StatusType.CHECKPOINTS ) if not checkpoint_list: checkpoint_list = [] GlobalTrainingStatus.set_parameter_state( behavior_name, StatusType.CHECKPOINTS, checkpoint_list ) return checkpoint_list @staticmethod def remove_checkpoint(checkpoint: Dict[str, Any]) -> None: """ Removes a checkpoint stored in checkpoint_list. If checkpoint cannot be found, no action is done. :param checkpoint: A checkpoint stored in checkpoint_list """ file_path: str = checkpoint["file_path"] if os.path.exists(file_path): os.remove(file_path) logger.debug(f"Removed checkpoint model {file_path}.") else: logger.debug(f"Checkpoint at {file_path} could not be found.") return @classmethod def _cleanup_extra_checkpoints( cls, checkpoints: List[Dict], keep_checkpoints: int ) -> List[Dict]: """ Ensures that the number of checkpoints stored are within the number of checkpoints the user defines. If the limit is hit, checkpoints are removed to create room for the next checkpoint to be inserted. :param behavior_name: The behavior name whose checkpoints we will mange. :param keep_checkpoints: Number of checkpoints to record (user-defined). """ while len(checkpoints) > keep_checkpoints: if keep_checkpoints <= 0 or len(checkpoints) == 0: break ModelCheckpointManager.remove_checkpoint(checkpoints.pop(0)) return checkpoints @classmethod def add_checkpoint( cls, behavior_name: str, new_checkpoint: ModelCheckpoint, keep_checkpoints: int ) -> None: """ Make room for new checkpoint if needed and insert new checkpoint information. :param behavior_name: Behavior name for the checkpoint. :param new_checkpoint: The new checkpoint to be recorded. :param keep_checkpoints: Number of checkpoints to record (user-defined). """ new_checkpoint_dict = attr.asdict(new_checkpoint) checkpoints = cls.get_checkpoints(behavior_name) checkpoints.append(new_checkpoint_dict) cls._cleanup_extra_checkpoints(checkpoints, keep_checkpoints) GlobalTrainingStatus.set_parameter_state( behavior_name, StatusType.CHECKPOINTS, checkpoints ) @classmethod def track_final_checkpoint( cls, behavior_name: str, final_checkpoint: ModelCheckpoint ) -> None: """ Ensures number of checkpoints stored is within the max number of checkpoints defined by the user and finally stores the information about the final model (or intermediate model if training is interrupted). :param behavior_name: Behavior name of the model. :param final_checkpoint: Checkpoint information for the final model. """ final_model_dict = attr.asdict(final_checkpoint) GlobalTrainingStatus.set_parameter_state( behavior_name, StatusType.FINAL_CHECKPOINT, final_model_dict )