import yaml import pytest from mlagents.trainers.upgrade_config import convert_behaviors, remove_nones, convert from mlagents.trainers.settings import ( TrainerType, PPOSettings, SACSettings, RewardSignalType, ) BRAIN_NAME = "testbehavior" # Check one per category BATCH_SIZE = 256 HIDDEN_UNITS = 32 SUMMARY_FREQ = 500 PPO_CONFIG = f""" default: trainer: ppo batch_size: 1024 beta: 5.0e-3 buffer_size: 10240 epsilon: 0.2 hidden_units: 128 lambd: 0.95 learning_rate: 3.0e-4 learning_rate_schedule: linear max_steps: 5.0e5 memory_size: 256 normalize: false num_epoch: 3 num_layers: 2 time_horizon: 64 sequence_length: 64 summary_freq: 10000 use_recurrent: false vis_encode_type: simple reward_signals: extrinsic: strength: 1.0 gamma: 0.99 {BRAIN_NAME}: trainer: ppo batch_size: {BATCH_SIZE} beta: 5.0e-3 buffer_size: 64 epsilon: 0.2 hidden_units: {HIDDEN_UNITS} lambd: 0.95 learning_rate: 5.0e-3 max_steps: 2500 memory_size: 256 normalize: false num_epoch: 3 num_layers: 2 time_horizon: 64 sequence_length: 64 summary_freq: {SUMMARY_FREQ} use_recurrent: false reward_signals: curiosity: strength: 1.0 gamma: 0.99 encoding_size: 128 """ SAC_CONFIG = f""" default: trainer: sac batch_size: 128 buffer_size: 50000 buffer_init_steps: 0 hidden_units: 128 init_entcoef: 1.0 learning_rate: 3.0e-4 learning_rate_schedule: constant max_steps: 5.0e5 memory_size: 256 normalize: false num_update: 1 train_interval: 1 num_layers: 2 time_horizon: 64 sequence_length: 64 summary_freq: 10000 tau: 0.005 use_recurrent: false vis_encode_type: simple reward_signals: extrinsic: strength: 1.0 gamma: 0.99 {BRAIN_NAME}: trainer: sac batch_size: {BATCH_SIZE} buffer_size: 64 buffer_init_steps: 100 hidden_units: {HIDDEN_UNITS} init_entcoef: 0.01 learning_rate: 3.0e-4 max_steps: 1000 memory_size: 256 normalize: false num_update: 1 train_interval: 1 num_layers: 1 time_horizon: 64 sequence_length: 64 summary_freq: {SUMMARY_FREQ} tau: 0.005 use_recurrent: false curiosity_enc_size: 128 demo_path: None vis_encode_type: simple reward_signals: curiosity: strength: 1.0 gamma: 0.99 encoding_size: 128 """ CURRICULUM = """ BigWallJump: measure: progress thresholds: [0.1, 0.3, 0.5] min_lesson_length: 200 signal_smoothing: true parameters: big_wall_min_height: [0.0, 4.0, 6.0, 8.0] big_wall_max_height: [4.0, 7.0, 8.0, 8.0] SmallWallJump: measure: progress thresholds: [0.1, 0.3, 0.5] min_lesson_length: 100 signal_smoothing: true parameters: small_wall_height: [1.5, 2.0, 2.5, 4.0] """ RANDOMIZATION = """ resampling-interval: 5000 mass: sampler-type: uniform min_value: 0.5 max_value: 10 gravity: sampler-type: uniform min_value: 7 max_value: 12 scale: sampler-type: uniform min_value: 0.75 max_value: 3 """ @pytest.mark.parametrize("use_recurrent", [True, False]) @pytest.mark.parametrize("trainer_type", [TrainerType.PPO, TrainerType.SAC]) def test_convert_behaviors(trainer_type, use_recurrent): if trainer_type == TrainerType.PPO: trainer_config = PPO_CONFIG trainer_settings_type = PPOSettings elif trainer_type == TrainerType.SAC: trainer_config = SAC_CONFIG trainer_settings_type = SACSettings old_config = yaml.load(trainer_config) old_config[BRAIN_NAME]["use_recurrent"] = use_recurrent new_config = convert_behaviors(old_config) # Test that the new config can be converted to TrainerSettings w/o exceptions trainer_settings = new_config[BRAIN_NAME] # Test that the trainer_settings contains the settings for BRAIN_NAME and # the defaults where specified assert trainer_settings.trainer_type == trainer_type assert isinstance(trainer_settings.hyperparameters, trainer_settings_type) assert trainer_settings.hyperparameters.batch_size == BATCH_SIZE assert trainer_settings.network_settings.hidden_units == HIDDEN_UNITS assert RewardSignalType.CURIOSITY in trainer_settings.reward_signals def test_convert(): old_behaviors = yaml.safe_load(PPO_CONFIG) old_curriculum = yaml.safe_load(CURRICULUM) old_sampler = yaml.safe_load(RANDOMIZATION) config = convert(old_behaviors, old_curriculum, old_sampler) assert BRAIN_NAME in config["behaviors"] assert "big_wall_min_height" in config["environment_parameters"] curriculum = config["environment_parameters"]["big_wall_min_height"]["curriculum"] assert len(curriculum) == 4 for i, expected_value in enumerate([0.0, 4.0, 6.0, 8.0]): assert curriculum[i][f"Lesson{i}"]["value"] == expected_value for i, threshold in enumerate([0.1, 0.3, 0.5]): criteria = curriculum[i][f"Lesson{i}"]["completion_criteria"] assert criteria["threshold"] == threshold assert criteria["behavior"] == "BigWallJump" assert criteria["signal_smoothing"] assert criteria["min_lesson_length"] == 200 assert criteria["measure"] == "progress" assert "gravity" in config["environment_parameters"] gravity = config["environment_parameters"]["gravity"] assert gravity["sampler_type"] == "uniform" assert gravity["sampler_parameters"]["min_value"] == 7 assert gravity["sampler_parameters"]["max_value"] == 12 def test_remove_nones(): dict_with_nones = {"hello": {"hello2": 2, "hello3": None}, "hello4": None} dict_without_nones = {"hello": {"hello2": 2}} output = remove_nones(dict_with_nones) assert output == dict_without_nones