from typing import Dict, Any import numpy as np from mlagents.trainers.policy.tf_policy import TFPolicy from .model import BCModel from mlagents.trainers.demo_loader import demo_to_buffer from mlagents.trainers.settings import BehavioralCloningSettings class BCModule: def __init__( self, policy: TFPolicy, settings: BehavioralCloningSettings, policy_learning_rate: float, default_batch_size: int, default_num_epoch: int, ): """ A BC trainer that can be used inline with RL. :param policy: The policy of the learning model :param policy_learning_rate: The initial Learning Rate of the policy. Used to set an appropriate learning rate for the pretrainer. :param default_batch_size: The default batch size to use if batch_size isn't provided. :param default_num_epoch: The default num_epoch to use if num_epoch isn't provided. :param strength: The proportion of learning rate used to update through BC. :param steps: The number of steps to anneal BC training over. 0 for continuous training. :param demo_path: The path to the demonstration file. :param batch_size: The batch size to use during BC training. :param num_epoch: Number of epochs to train for during each update. :param samples_per_update: Maximum number of samples to train on during each BC update. """ self.policy = policy self.current_lr = policy_learning_rate * settings.strength self.model = BCModel(policy, self.current_lr, settings.steps) _, self.demonstration_buffer = demo_to_buffer( settings.demo_path, policy.sequence_length, policy.behavior_spec ) self.batch_size = ( settings.batch_size if settings.batch_size else default_batch_size ) self.num_epoch = settings.num_epoch if settings.num_epoch else default_num_epoch self.n_sequences = max( min(self.batch_size, self.demonstration_buffer.num_experiences) // policy.sequence_length, 1, ) self.has_updated = False self.use_recurrent = self.policy.use_recurrent self.samples_per_update = settings.samples_per_update self.out_dict = { "loss": self.model.loss, "update": self.model.update_batch, "learning_rate": self.model.annealed_learning_rate, } def update(self) -> Dict[str, Any]: """ Updates model using buffer. :param max_batches: The maximum number of batches to use per update. :return: The loss of the update. """ # Don't continue training if the learning rate has reached 0, to reduce training time. if self.current_lr <= 0: return {"Losses/Pretraining Loss": 0} batch_losses = [] possible_demo_batches = ( self.demonstration_buffer.num_experiences // self.n_sequences ) possible_batches = possible_demo_batches max_batches = self.samples_per_update // self.n_sequences n_epoch = self.num_epoch for _ in range(n_epoch): self.demonstration_buffer.shuffle( sequence_length=self.policy.sequence_length ) if max_batches == 0: num_batches = possible_batches else: num_batches = min(possible_batches, max_batches) for i in range(num_batches // self.policy.sequence_length): demo_update_buffer = self.demonstration_buffer start = i * self.n_sequences * self.policy.sequence_length end = (i + 1) * self.n_sequences * self.policy.sequence_length mini_batch_demo = demo_update_buffer.make_mini_batch(start, end) run_out = self._update_batch(mini_batch_demo, self.n_sequences) loss = run_out["loss"] self.current_lr = run_out["learning_rate"] batch_losses.append(loss) self.has_updated = True update_stats = {"Losses/Pretraining Loss": np.mean(batch_losses)} return update_stats def _update_batch( self, mini_batch_demo: Dict[str, Any], n_sequences: int ) -> Dict[str, Any]: """ Helper function for update_batch. """ feed_dict = { self.policy.batch_size_ph: n_sequences, self.policy.sequence_length_ph: self.policy.sequence_length, } feed_dict[self.model.action_in_expert] = mini_batch_demo["actions"] if self.policy.behavior_spec.action_spec.is_discrete(): feed_dict[self.policy.action_masks] = np.ones( ( self.n_sequences * self.policy.sequence_length, sum(self.policy.behavior_spec.action_spec.discrete_branches), ), dtype=np.float32, ) if self.policy.vec_obs_size > 0: feed_dict[self.policy.vector_in] = mini_batch_demo["vector_obs"] for i, _ in enumerate(self.policy.visual_in): feed_dict[self.policy.visual_in[i]] = mini_batch_demo["visual_obs%d" % i] if self.use_recurrent: feed_dict[self.policy.memory_in] = np.zeros( [self.n_sequences, self.policy.m_size], dtype=np.float32 ) if not self.policy.use_continuous_act: feed_dict[self.policy.prev_action] = mini_batch_demo["prev_action"] network_out = self.policy.sess.run( list(self.out_dict.values()), feed_dict=feed_dict ) run_out = dict(zip(list(self.out_dict.keys()), network_out)) return run_out