浏览代码

Remove some dependencies of the trainers on UnityEnvironment (and use BaseEnv instead)

/develop/use-base-env-in-learn
vincentpierre 4 年前
当前提交
e3b67e9f
共有 2 个文件被更改,包括 5 次插入6 次删除
  1. 2
      ml-agents/mlagents/trainers/learn.py
  2. 9
      ml-agents/mlagents/trainers/subprocess_env_manager.py

2
ml-agents/mlagents/trainers/learn.py


) -> Callable[[int, List[SideChannel]], BaseEnv]:
def create_unity_environment(
worker_id: int, side_channels: List[SideChannel]
) -> UnityEnvironment:
) -> BaseEnv:
# Make sure that each environment gets a different seed
env_seed = seed + worker_id
return UnityEnvironment(

9
ml-agents/mlagents/trainers/subprocess_env_manager.py


import enum
import time
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.exception import (
UnityCommunicationException,
UnityTimeOutException,

run_options: RunOptions,
log_level: int = logging_util.INFO,
) -> None:
env_factory: Callable[
[int, List[SideChannel]], UnityEnvironment
] = cloudpickle.loads(pickled_env_factory)
env_factory: Callable[[int, List[SideChannel]], BaseEnv] = cloudpickle.loads(
pickled_env_factory
)
env_parameters = EnvironmentParametersChannel()
engine_config = EngineConfig(

training_analytics_channel: Optional[TrainingAnalyticsSideChannel] = None
if worker_id == 0:
training_analytics_channel = TrainingAnalyticsSideChannel()
env: UnityEnvironment = None
env: BaseEnv = None
# Set log level. On some platforms, the logger isn't common with the
# main process, so we need to set it again.
logging_util.set_log_level(log_level)

正在加载...
取消
保存