Ervin Teng
5 年前
当前提交
dc43b0c6
共有 1 个文件被更改,包括 191 次插入 和 0 次删除
|
|||
import pytest |
|||
|
|||
import numpy as np |
|||
from mlagents.tf_utils import tf |
|||
|
|||
import yaml |
|||
|
|||
from mlagents.trainers.common.nn_policy import NNPolicy |
|||
from mlagents.trainers.models import EncoderType, LearningModel |
|||
from mlagents.trainers.exception import UnityTrainerException |
|||
from mlagents.trainers.brain import BrainParameters, CameraResolution |
|||
from mlagents.trainers.tests import mock_brain as mb |
|||
from mlagents.trainers.tests.test_trajectory import make_fake_trajectory |
|||
|
|||
|
|||
@pytest.fixture |
|||
def dummy_config(): |
|||
return yaml.safe_load( |
|||
""" |
|||
trainer: ppo |
|||
batch_size: 32 |
|||
beta: 5.0e-3 |
|||
buffer_size: 512 |
|||
epsilon: 0.2 |
|||
hidden_units: 128 |
|||
lambd: 0.95 |
|||
learning_rate: 3.0e-4 |
|||
max_steps: 5.0e4 |
|||
normalize: true |
|||
num_epoch: 5 |
|||
num_layers: 2 |
|||
time_horizon: 64 |
|||
sequence_length: 64 |
|||
summary_freq: 1000 |
|||
use_recurrent: false |
|||
normalize: true |
|||
memory_size: 8 |
|||
curiosity_strength: 0.0 |
|||
curiosity_enc_size: 1 |
|||
summary_path: test |
|||
model_path: test |
|||
reward_signals: |
|||
extrinsic: |
|||
strength: 1.0 |
|||
gamma: 0.99 |
|||
""" |
|||
) |
|||
|
|||
|
|||
VECTOR_ACTION_SPACE = [2] |
|||
VECTOR_OBS_SPACE = 8 |
|||
DISCRETE_ACTION_SPACE = [3, 3, 3, 2] |
|||
BUFFER_INIT_SAMPLES = 32 |
|||
NUM_AGENTS = 12 |
|||
|
|||
|
|||
def create_policy_mock(dummy_config, use_rnn, use_discrete, use_visual): |
|||
mock_brain = mb.setup_mock_brain( |
|||
use_discrete, |
|||
use_visual, |
|||
vector_action_space=VECTOR_ACTION_SPACE, |
|||
vector_obs_space=VECTOR_OBS_SPACE, |
|||
discrete_action_space=DISCRETE_ACTION_SPACE, |
|||
) |
|||
|
|||
trainer_parameters = dummy_config |
|||
model_path = "testmodel" |
|||
trainer_parameters["model_path"] = model_path |
|||
trainer_parameters["keep_checkpoints"] = 3 |
|||
trainer_parameters["use_recurrent"] = use_rnn |
|||
policy = NNPolicy(0, mock_brain, trainer_parameters, False, False) |
|||
return policy |
|||
|
|||
|
|||
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"]) |
|||
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"]) |
|||
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"]) |
|||
def test_policy_evaluate(dummy_config, rnn, visual, discrete): |
|||
# Test evaluate |
|||
tf.reset_default_graph() |
|||
policy = create_policy_mock( |
|||
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual |
|||
) |
|||
step = mb.create_batchedstep_from_brainparams(policy.brain, num_agents=NUM_AGENTS) |
|||
|
|||
run_out = policy.evaluate(step, list(step.agent_id)) |
|||
if discrete: |
|||
run_out["action"].shape == (NUM_AGENTS, len(DISCRETE_ACTION_SPACE)) |
|||
else: |
|||
assert run_out["action"].shape == (NUM_AGENTS, VECTOR_ACTION_SPACE[0]) |
|||
|
|||
|
|||
def test_normalization(dummy_config): |
|||
brain_params = BrainParameters( |
|||
brain_name="test_brain", |
|||
vector_observation_space_size=1, |
|||
camera_resolutions=[], |
|||
vector_action_space_size=[2], |
|||
vector_action_descriptions=[], |
|||
vector_action_space_type=0, |
|||
) |
|||
dummy_config["summary_path"] = "./summaries/test_trainer_summary" |
|||
dummy_config["model_path"] = "./models/test_trainer_models/TestModel" |
|||
|
|||
time_horizon = 6 |
|||
trajectory = make_fake_trajectory( |
|||
length=time_horizon, |
|||
max_step_complete=True, |
|||
vec_obs_size=1, |
|||
num_vis_obs=0, |
|||
action_space=[2], |
|||
) |
|||
# Change half of the obs to 0 |
|||
for i in range(3): |
|||
trajectory.steps[i].obs[0] = np.zeros(1, dtype=np.float32) |
|||
policy = policy = NNPolicy(0, brain_params, dummy_config, False, False) |
|||
|
|||
trajectory_buffer = trajectory.to_agentbuffer() |
|||
policy.update_normalization(trajectory_buffer["vector_obs"]) |
|||
|
|||
# Check that the running mean and variance is correct |
|||
steps, mean, variance = policy.sess.run( |
|||
[policy.normalization_steps, policy.running_mean, policy.running_variance] |
|||
) |
|||
|
|||
assert steps == 6 |
|||
assert mean[0] == 0.5 |
|||
# Note: variance is divided by number of steps, and initialized to 1 to avoid |
|||
# divide by 0. The right answer is 0.25 |
|||
assert (variance[0] - 1) / steps == 0.25 |
|||
|
|||
# Make another update, this time with all 1's |
|||
time_horizon = 10 |
|||
trajectory = make_fake_trajectory( |
|||
length=time_horizon, |
|||
max_step_complete=True, |
|||
vec_obs_size=1, |
|||
num_vis_obs=0, |
|||
action_space=[2], |
|||
) |
|||
trajectory_buffer = trajectory.to_agentbuffer() |
|||
policy.update_normalization(trajectory_buffer["vector_obs"]) |
|||
|
|||
# Check that the running mean and variance is correct |
|||
steps, mean, variance = policy.sess.run( |
|||
[policy.normalization_steps, policy.running_mean, policy.running_variance] |
|||
) |
|||
|
|||
assert steps == 16 |
|||
assert mean[0] == 0.8125 |
|||
assert (variance[0] - 1) / steps == pytest.approx(0.152, abs=0.01) |
|||
|
|||
|
|||
def test_min_visual_size(): |
|||
# Make sure each EncoderType has an entry in MIS_RESOLUTION_FOR_ENCODER |
|||
assert set(LearningModel.MIN_RESOLUTION_FOR_ENCODER.keys()) == set(EncoderType) |
|||
|
|||
for encoder_type in EncoderType: |
|||
with tf.Graph().as_default(): |
|||
good_size = LearningModel.MIN_RESOLUTION_FOR_ENCODER[encoder_type] |
|||
good_res = CameraResolution( |
|||
width=good_size, height=good_size, num_channels=3 |
|||
) |
|||
vis_input = LearningModel.create_visual_input( |
|||
good_res, "test_min_visual_size" |
|||
) |
|||
LearningModel._check_resolution_for_encoder(vis_input, encoder_type) |
|||
enc_func = LearningModel.get_encoder_for_type(encoder_type) |
|||
enc_func(vis_input, 32, LearningModel.swish, 1, "test", False) |
|||
|
|||
# Anything under the min size should raise an exception. If not, decrease the min size! |
|||
with pytest.raises(Exception): |
|||
with tf.Graph().as_default(): |
|||
bad_size = LearningModel.MIN_RESOLUTION_FOR_ENCODER[encoder_type] - 1 |
|||
bad_res = CameraResolution( |
|||
width=bad_size, height=bad_size, num_channels=3 |
|||
) |
|||
vis_input = LearningModel.create_visual_input( |
|||
bad_res, "test_min_visual_size" |
|||
) |
|||
|
|||
with pytest.raises(UnityTrainerException): |
|||
# Make sure we'd hit a friendly error during model setup time. |
|||
LearningModel._check_resolution_for_encoder(vis_input, encoder_type) |
|||
|
|||
enc_func = LearningModel.get_encoder_for_type(encoder_type) |
|||
enc_func(vis_input, 32, LearningModel.swish, 1, "test", False) |
|||
|
|||
|
|||
if __name__ == "__main__": |
|||
pytest.main() |
撰写
预览
正在加载...
取消
保存
Reference in new issue