|
|
|
|
|
|
|
|
|
|
from mlagents.trainers.tests.simple_test_envs import ( |
|
|
|
SimpleEnvironment, |
|
|
|
HybridEnvironment, |
|
|
|
MemoryEnvironment, |
|
|
|
RecordEnvironment, |
|
|
|
) |
|
|
|
|
|
|
PPO_TORCH_CONFIG = attr.evolve(ppo_dummy_config(), framework=FrameworkType.PYTORCH) |
|
|
|
SAC_TORCH_CONFIG = attr.evolve(sac_dummy_config(), framework=FrameworkType.PYTORCH) |
|
|
|
|
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# def test_simple_ppo(use_discrete): |
|
|
|
# env = SimpleEnvironment([BRAIN_NAME], use_discrete=use_discrete) |
|
|
|
# config = attr.evolve(PPO_TORCH_CONFIG) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
def test_simple_ppo(use_discrete): |
|
|
|
env = SimpleEnvironment([BRAIN_NAME], use_discrete=use_discrete) |
|
|
|
config = attr.evolve(PPO_TORCH_CONFIG) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
def test_hybrid_ppo(): |
|
|
|
env = HybridEnvironment( |
|
|
|
[BRAIN_NAME], continuous_action_size=1, discrete_action_size=1, step_size=0.8 |
|
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
def test_2d_ppo(use_discrete): |
|
|
|
env = SimpleEnvironment( |
|
|
|
[BRAIN_NAME], use_discrete=use_discrete, action_size=2, step_size=0.8 |
|
|
|
PPO_TORCH_CONFIG.hyperparameters, batch_size=32, buffer_size=1280 |
|
|
|
PPO_TORCH_CONFIG.hyperparameters, batch_size=64, buffer_size=640 |
|
|
|
) |
|
|
|
config = attr.evolve( |
|
|
|
PPO_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=10000 |
|
|
|
config = attr.evolve(PPO_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=10000) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
def test_conthybrid_ppo(): |
|
|
|
env = HybridEnvironment( |
|
|
|
[BRAIN_NAME], continuous_action_size=1, discrete_action_size=0, step_size=0.8 |
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
@pytest.mark.parametrize("num_visual", [1, 2]) |
|
|
|
def test_visual_ppo(num_visual, use_discrete): |
|
|
|
env = SimpleEnvironment( |
|
|
|
[BRAIN_NAME], |
|
|
|
use_discrete=use_discrete, |
|
|
|
num_visual=num_visual, |
|
|
|
num_vector=0, |
|
|
|
step_size=0.2, |
|
|
|
config = attr.evolve(PPO_TORCH_CONFIG) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0) |
|
|
|
new_hyperparams = attr.evolve( |
|
|
|
PPO_TORCH_CONFIG.hyperparameters, learning_rate=3.0e-4 |
|
|
|
) |
|
|
|
config = attr.evolve(PPO_TORCH_CONFIG, hyperparameters=new_hyperparams) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
def test_dischybrid_ppo(): |
|
|
|
env = HybridEnvironment( |
|
|
|
[BRAIN_NAME], continuous_action_size=0, discrete_action_size=1, step_size=0.8 |
|
|
|
@pytest.mark.parametrize("num_visual", [1, 2]) |
|
|
|
@pytest.mark.parametrize("vis_encode_type", ["resnet", "nature_cnn", "match3"]) |
|
|
|
def test_visual_advanced_ppo(vis_encode_type, num_visual): |
|
|
|
env = SimpleEnvironment( |
|
|
|
[BRAIN_NAME], |
|
|
|
use_discrete=True, |
|
|
|
num_visual=num_visual, |
|
|
|
num_vector=0, |
|
|
|
step_size=0.5, |
|
|
|
vis_obs_size=(5, 5, 5) if vis_encode_type == "match3" else (36, 36, 3), |
|
|
|
) |
|
|
|
new_networksettings = attr.evolve( |
|
|
|
SAC_TORCH_CONFIG.network_settings, vis_encode_type=EncoderType(vis_encode_type) |
|
|
|
config = attr.evolve(PPO_TORCH_CONFIG) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0) |
|
|
|
new_hyperparams = attr.evolve( |
|
|
|
PPO_TORCH_CONFIG.hyperparameters, learning_rate=3.0e-4 |
|
|
|
) |
|
|
|
config = attr.evolve( |
|
|
|
PPO_TORCH_CONFIG, |
|
|
|
hyperparameters=new_hyperparams, |
|
|
|
network_settings=new_networksettings, |
|
|
|
max_steps=700, |
|
|
|
summary_freq=100, |
|
|
|
) |
|
|
|
# The number of steps is pretty small for these encoders |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.5) |
|
|
|
def test_3cdhybrid_ppo(): |
|
|
|
env = HybridEnvironment([BRAIN_NAME], continuous_action_size=2, discrete_action_size=1, step_size=0.8) |
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
def test_recurrent_ppo(use_discrete): |
|
|
|
env = MemoryEnvironment([BRAIN_NAME], use_discrete=use_discrete) |
|
|
|
new_network_settings = attr.evolve( |
|
|
|
PPO_TORCH_CONFIG.network_settings, |
|
|
|
memory=NetworkSettings.MemorySettings(memory_size=16), |
|
|
|
) |
|
|
|
PPO_TORCH_CONFIG.hyperparameters, batch_size=128, buffer_size=1280, beta=0.01 |
|
|
|
PPO_TORCH_CONFIG.hyperparameters, |
|
|
|
learning_rate=1.0e-3, |
|
|
|
batch_size=64, |
|
|
|
buffer_size=128, |
|
|
|
config = attr.evolve(PPO_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=10000) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0) |
|
|
|
config = attr.evolve( |
|
|
|
PPO_TORCH_CONFIG, |
|
|
|
hyperparameters=new_hyperparams, |
|
|
|
network_settings=new_network_settings, |
|
|
|
max_steps=5000, |
|
|
|
) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
def test_simple_sac(use_discrete): |
|
|
|
env = SimpleEnvironment([BRAIN_NAME], use_discrete=use_discrete) |
|
|
|
config = attr.evolve(SAC_TORCH_CONFIG) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
def test_3ddhybrid_ppo(): |
|
|
|
env = HybridEnvironment( |
|
|
|
[BRAIN_NAME], continuous_action_size=1, discrete_action_size=2, step_size=0.8 |
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
def test_2d_sac(use_discrete): |
|
|
|
env = SimpleEnvironment( |
|
|
|
[BRAIN_NAME], use_discrete=use_discrete, action_size=2, step_size=0.8 |
|
|
|
PPO_TORCH_CONFIG.hyperparameters, batch_size=128, buffer_size=1280, beta=0.01 |
|
|
|
SAC_TORCH_CONFIG.hyperparameters, buffer_init_steps=2000 |
|
|
|
) |
|
|
|
config = attr.evolve( |
|
|
|
SAC_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=10000 |
|
|
|
config = attr.evolve(PPO_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=10000) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=1.0) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.8) |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# def test_2d_ppo(use_discrete): |
|
|
|
# env = SimpleEnvironment( |
|
|
|
# [BRAIN_NAME], use_discrete=use_discrete, action_size=2, step_size=0.8 |
|
|
|
# ) |
|
|
|
# new_hyperparams = attr.evolve( |
|
|
|
# PPO_TORCH_CONFIG.hyperparameters, batch_size=64, buffer_size=640 |
|
|
|
# ) |
|
|
|
# config = attr.evolve(PPO_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=10000) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# @pytest.mark.parametrize("num_visual", [1, 2]) |
|
|
|
# def test_visual_ppo(num_visual, use_discrete): |
|
|
|
# env = SimpleEnvironment( |
|
|
|
# [BRAIN_NAME], |
|
|
|
# use_discrete=use_discrete, |
|
|
|
# num_visual=num_visual, |
|
|
|
# num_vector=0, |
|
|
|
# step_size=0.2, |
|
|
|
# ) |
|
|
|
# new_hyperparams = attr.evolve(PPO_TORCH_CONFIG.hyperparameters, learning_rate=3.0e-4) |
|
|
|
# config = attr.evolve(PPO_TORCH_CONFIG, hyperparameters=new_hyperparams) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("num_visual", [1, 2]) |
|
|
|
# @pytest.mark.parametrize("vis_encode_type", ["resnet", "nature_cnn", "match3"]) |
|
|
|
# def test_visual_advanced_ppo(vis_encode_type, num_visual): |
|
|
|
# env = SimpleEnvironment( |
|
|
|
# [BRAIN_NAME], |
|
|
|
# use_discrete=True, |
|
|
|
# num_visual=num_visual, |
|
|
|
# num_vector=0, |
|
|
|
# step_size=0.5, |
|
|
|
# vis_obs_size=(5, 5, 5) if vis_encode_type == "match3" else (36, 36, 3), |
|
|
|
# ) |
|
|
|
# new_networksettings = attr.evolve( |
|
|
|
# SAC_TORCH_CONFIG.network_settings, vis_encode_type=EncoderType(vis_encode_type) |
|
|
|
# ) |
|
|
|
# new_hyperparams = attr.evolve(PPO_TORCH_CONFIG.hyperparameters, learning_rate=3.0e-4) |
|
|
|
# config = attr.evolve( |
|
|
|
# PPO_TORCH_CONFIG, |
|
|
|
# hyperparameters=new_hyperparams, |
|
|
|
# network_settings=new_networksettings, |
|
|
|
# max_steps=700, |
|
|
|
# summary_freq=100, |
|
|
|
# ) |
|
|
|
# # The number of steps is pretty small for these encoders |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.5) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# def test_recurrent_ppo(use_discrete): |
|
|
|
# env = MemoryEnvironment([BRAIN_NAME], use_discrete=use_discrete) |
|
|
|
# new_network_settings = attr.evolve( |
|
|
|
# PPO_TORCH_CONFIG.network_settings, |
|
|
|
# memory=NetworkSettings.MemorySettings(memory_size=16), |
|
|
|
# ) |
|
|
|
# new_hyperparams = attr.evolve( |
|
|
|
# PPO_TORCH_CONFIG.hyperparameters, learning_rate=1.0e-3, batch_size=64, buffer_size=128 |
|
|
|
# ) |
|
|
|
# config = attr.evolve( |
|
|
|
# PPO_TORCH_CONFIG, |
|
|
|
# hyperparameters=new_hyperparams, |
|
|
|
# network_settings=new_network_settings, |
|
|
|
# max_steps=5000, |
|
|
|
# ) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# def test_simple_sac(use_discrete): |
|
|
|
# env = SimpleEnvironment([BRAIN_NAME], use_discrete=use_discrete) |
|
|
|
# config = attr.evolve(SAC_TORCH_CONFIG) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# def test_2d_sac(use_discrete): |
|
|
|
# env = SimpleEnvironment( |
|
|
|
# [BRAIN_NAME], use_discrete=use_discrete, action_size=2, step_size=0.8 |
|
|
|
# ) |
|
|
|
# new_hyperparams = attr.evolve(SAC_TORCH_CONFIG.hyperparameters, buffer_init_steps=2000) |
|
|
|
# config = attr.evolve(SAC_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=10000) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.8) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# @pytest.mark.parametrize("num_visual", [1, 2]) |
|
|
|
# def test_visual_sac(num_visual, use_discrete): |
|
|
|
# env = SimpleEnvironment( |
|
|
|
# [BRAIN_NAME], |
|
|
|
# use_discrete=use_discrete, |
|
|
|
# num_visual=num_visual, |
|
|
|
# num_vector=0, |
|
|
|
# step_size=0.2, |
|
|
|
# ) |
|
|
|
# new_hyperparams = attr.evolve( |
|
|
|
# SAC_TORCH_CONFIG.hyperparameters, batch_size=16, learning_rate=3e-4 |
|
|
|
# ) |
|
|
|
# config = attr.evolve(SAC_TORCH_CONFIG, hyperparameters=new_hyperparams) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("num_visual", [1, 2]) |
|
|
|
# @pytest.mark.parametrize("vis_encode_type", ["resnet", "nature_cnn", "match3"]) |
|
|
|
# def test_visual_advanced_sac(vis_encode_type, num_visual): |
|
|
|
# env = SimpleEnvironment( |
|
|
|
# [BRAIN_NAME], |
|
|
|
# use_discrete=True, |
|
|
|
# num_visual=num_visual, |
|
|
|
# num_vector=0, |
|
|
|
# step_size=0.5, |
|
|
|
# vis_obs_size=(5, 5, 5) if vis_encode_type == "match3" else (36, 36, 3), |
|
|
|
# ) |
|
|
|
# new_networksettings = attr.evolve( |
|
|
|
# SAC_TORCH_CONFIG.network_settings, vis_encode_type=EncoderType(vis_encode_type) |
|
|
|
# ) |
|
|
|
# new_hyperparams = attr.evolve( |
|
|
|
# SAC_TORCH_CONFIG.hyperparameters, |
|
|
|
# batch_size=16, |
|
|
|
# learning_rate=3e-4, |
|
|
|
# buffer_init_steps=0, |
|
|
|
# ) |
|
|
|
# config = attr.evolve( |
|
|
|
# SAC_TORCH_CONFIG, |
|
|
|
# hyperparameters=new_hyperparams, |
|
|
|
# network_settings=new_networksettings, |
|
|
|
# max_steps=100, |
|
|
|
# ) |
|
|
|
# # The number of steps is pretty small for these encoders |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.5) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# def test_recurrent_sac(use_discrete): |
|
|
|
# step_size = 0.2 if use_discrete else 0.5 |
|
|
|
# env = MemoryEnvironment( |
|
|
|
# [BRAIN_NAME], use_discrete=use_discrete, step_size=step_size |
|
|
|
# ) |
|
|
|
# new_networksettings = attr.evolve( |
|
|
|
# SAC_TORCH_CONFIG.network_settings, |
|
|
|
# memory=NetworkSettings.MemorySettings(memory_size=16, sequence_length=16), |
|
|
|
# ) |
|
|
|
# new_hyperparams = attr.evolve( |
|
|
|
# SAC_TORCH_CONFIG.hyperparameters, |
|
|
|
# batch_size=128, |
|
|
|
# learning_rate=1e-3, |
|
|
|
# buffer_init_steps=1000, |
|
|
|
# steps_per_update=2, |
|
|
|
# ) |
|
|
|
# config = attr.evolve( |
|
|
|
# SAC_TORCH_CONFIG, |
|
|
|
# hyperparameters=new_hyperparams, |
|
|
|
# network_settings=new_networksettings, |
|
|
|
# max_steps=5000, |
|
|
|
# ) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# def test_simple_ghost(use_discrete): |
|
|
|
# env = SimpleEnvironment( |
|
|
|
# [BRAIN_NAME + "?team=0", BRAIN_NAME + "?team=1"], use_discrete=use_discrete |
|
|
|
# ) |
|
|
|
# self_play_settings = SelfPlaySettings( |
|
|
|
# play_against_latest_model_ratio=1.0, save_steps=2000, swap_steps=2000 |
|
|
|
# ) |
|
|
|
# config = attr.evolve(PPO_TORCH_CONFIG, self_play=self_play_settings, max_steps=2500) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# def test_simple_ghost_fails(use_discrete): |
|
|
|
# env = SimpleEnvironment( |
|
|
|
# [BRAIN_NAME + "?team=0", BRAIN_NAME + "?team=1"], use_discrete=use_discrete |
|
|
|
# ) |
|
|
|
# # This config should fail because the ghosted policy is never swapped with a competent policy. |
|
|
|
# # Swap occurs after max step is reached. |
|
|
|
# self_play_settings = SelfPlaySettings( |
|
|
|
# play_against_latest_model_ratio=1.0, save_steps=2000, swap_steps=4000 |
|
|
|
# ) |
|
|
|
# config = attr.evolve(PPO_TORCH_CONFIG, self_play=self_play_settings, max_steps=2500) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=None) |
|
|
|
# processed_rewards = [ |
|
|
|
# default_reward_processor(rewards) for rewards in env.final_rewards.values() |
|
|
|
# ] |
|
|
|
# success_threshold = 0.9 |
|
|
|
# assert any(reward > success_threshold for reward in processed_rewards) and any( |
|
|
|
# reward < success_threshold for reward in processed_rewards |
|
|
|
# ) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# def test_simple_asymm_ghost(use_discrete): |
|
|
|
# # Make opponent for asymmetric case |
|
|
|
# brain_name_opp = BRAIN_NAME + "Opp" |
|
|
|
# env = SimpleEnvironment( |
|
|
|
# [BRAIN_NAME + "?team=0", brain_name_opp + "?team=1"], use_discrete=use_discrete |
|
|
|
# ) |
|
|
|
# self_play_settings = SelfPlaySettings( |
|
|
|
# play_against_latest_model_ratio=1.0, |
|
|
|
# save_steps=10000, |
|
|
|
# swap_steps=10000, |
|
|
|
# team_change=400, |
|
|
|
# ) |
|
|
|
# config = attr.evolve(PPO_TORCH_CONFIG, self_play=self_play_settings, max_steps=4000) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config, brain_name_opp: config}) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# def test_simple_asymm_ghost_fails(use_discrete): |
|
|
|
# # Make opponent for asymmetric case |
|
|
|
# brain_name_opp = BRAIN_NAME + "Opp" |
|
|
|
# env = SimpleEnvironment( |
|
|
|
# [BRAIN_NAME + "?team=0", brain_name_opp + "?team=1"], use_discrete=use_discrete |
|
|
|
# ) |
|
|
|
# # This config should fail because the team that us not learning when both have reached |
|
|
|
# # max step should be executing the initial, untrained poliy. |
|
|
|
# self_play_settings = SelfPlaySettings( |
|
|
|
# play_against_latest_model_ratio=0.0, |
|
|
|
# save_steps=5000, |
|
|
|
# swap_steps=5000, |
|
|
|
# team_change=2000, |
|
|
|
# ) |
|
|
|
# config = attr.evolve(PPO_TORCH_CONFIG, self_play=self_play_settings, max_steps=3000) |
|
|
|
# _check_environment_trains( |
|
|
|
# env, {BRAIN_NAME: config, brain_name_opp: config}, success_threshold=None |
|
|
|
# ) |
|
|
|
# processed_rewards = [ |
|
|
|
# default_reward_processor(rewards) for rewards in env.final_rewards.values() |
|
|
|
# ] |
|
|
|
# success_threshold = 0.9 |
|
|
|
# assert any(reward > success_threshold for reward in processed_rewards) and any( |
|
|
|
# reward < success_threshold for reward in processed_rewards |
|
|
|
# ) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.fixture(scope="session") |
|
|
|
# def simple_record(tmpdir_factory): |
|
|
|
# def record_demo(use_discrete, num_visual=0, num_vector=1): |
|
|
|
# env = RecordEnvironment( |
|
|
|
# [BRAIN_NAME], |
|
|
|
# use_discrete=use_discrete, |
|
|
|
# num_visual=num_visual, |
|
|
|
# num_vector=num_vector, |
|
|
|
# n_demos=100, |
|
|
|
# ) |
|
|
|
# # If we want to use true demos, we can solve the env in the usual way |
|
|
|
# # Otherwise, we can just call solve to execute the optimal policy |
|
|
|
# env.solve() |
|
|
|
# agent_info_protos = env.demonstration_protos[BRAIN_NAME] |
|
|
|
# meta_data_proto = DemonstrationMetaProto() |
|
|
|
# brain_param_proto = BrainParametersProto( |
|
|
|
# vector_action_size=[2] if use_discrete else [1], |
|
|
|
# vector_action_descriptions=[""], |
|
|
|
# vector_action_space_type=discrete if use_discrete else continuous, |
|
|
|
# brain_name=BRAIN_NAME, |
|
|
|
# is_training=True, |
|
|
|
# ) |
|
|
|
# action_type = "Discrete" if use_discrete else "Continuous" |
|
|
|
# demo_path_name = "1DTest" + action_type + ".demo" |
|
|
|
# demo_path = str(tmpdir_factory.mktemp("tmp_demo").join(demo_path_name)) |
|
|
|
# write_demo(demo_path, meta_data_proto, brain_param_proto, agent_info_protos) |
|
|
|
# return demo_path |
|
|
|
# |
|
|
|
# return record_demo |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# @pytest.mark.parametrize("trainer_config", [PPO_TORCH_CONFIG, SAC_TORCH_CONFIG]) |
|
|
|
# def test_gail(simple_record, use_discrete, trainer_config): |
|
|
|
# demo_path = simple_record(use_discrete) |
|
|
|
# env = SimpleEnvironment([BRAIN_NAME], use_discrete=use_discrete, step_size=0.2) |
|
|
|
# bc_settings = BehavioralCloningSettings(demo_path=demo_path, steps=1000) |
|
|
|
# reward_signals = { |
|
|
|
# RewardSignalType.GAIL: GAILSettings(encoding_size=32, demo_path=demo_path) |
|
|
|
# } |
|
|
|
# config = attr.evolve( |
|
|
|
# trainer_config, |
|
|
|
# reward_signals=reward_signals, |
|
|
|
# behavioral_cloning=bc_settings, |
|
|
|
# max_steps=500, |
|
|
|
# ) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# def test_gail_visual_ppo(simple_record, use_discrete): |
|
|
|
# demo_path = simple_record(use_discrete, num_visual=1, num_vector=0) |
|
|
|
# env = SimpleEnvironment( |
|
|
|
# [BRAIN_NAME], |
|
|
|
# num_visual=1, |
|
|
|
# num_vector=0, |
|
|
|
# use_discrete=use_discrete, |
|
|
|
# step_size=0.2, |
|
|
|
# ) |
|
|
|
# bc_settings = BehavioralCloningSettings(demo_path=demo_path, steps=1500) |
|
|
|
# reward_signals = { |
|
|
|
# RewardSignalType.GAIL: GAILSettings(encoding_size=32, demo_path=demo_path) |
|
|
|
# } |
|
|
|
# hyperparams = attr.evolve(PPO_TORCH_CONFIG.hyperparameters, learning_rate=3e-4) |
|
|
|
# config = attr.evolve( |
|
|
|
# PPO_TORCH_CONFIG, |
|
|
|
# reward_signals=reward_signals, |
|
|
|
# hyperparameters=hyperparams, |
|
|
|
# behavioral_cloning=bc_settings, |
|
|
|
# max_steps=1000, |
|
|
|
# ) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9) |
|
|
|
# |
|
|
|
# |
|
|
|
# @pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
# def test_gail_visual_sac(simple_record, use_discrete): |
|
|
|
# demo_path = simple_record(use_discrete, num_visual=1, num_vector=0) |
|
|
|
# env = SimpleEnvironment( |
|
|
|
# [BRAIN_NAME], |
|
|
|
# num_visual=1, |
|
|
|
# num_vector=0, |
|
|
|
# use_discrete=use_discrete, |
|
|
|
# step_size=0.2, |
|
|
|
# ) |
|
|
|
# bc_settings = BehavioralCloningSettings(demo_path=demo_path, steps=1000) |
|
|
|
# reward_signals = { |
|
|
|
# RewardSignalType.GAIL: GAILSettings(encoding_size=32, demo_path=demo_path) |
|
|
|
# } |
|
|
|
# hyperparams = attr.evolve( |
|
|
|
# SAC_TORCH_CONFIG.hyperparameters, learning_rate=3e-4, batch_size=16 |
|
|
|
# ) |
|
|
|
# config = attr.evolve( |
|
|
|
# SAC_TORCH_CONFIG, |
|
|
|
# reward_signals=reward_signals, |
|
|
|
# hyperparameters=hyperparams, |
|
|
|
# behavioral_cloning=bc_settings, |
|
|
|
# max_steps=500, |
|
|
|
# ) |
|
|
|
# _check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9) |
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
@pytest.mark.parametrize("num_visual", [1, 2]) |
|
|
|
def test_visual_sac(num_visual, use_discrete): |
|
|
|
env = SimpleEnvironment( |
|
|
|
[BRAIN_NAME], |
|
|
|
use_discrete=use_discrete, |
|
|
|
num_visual=num_visual, |
|
|
|
num_vector=0, |
|
|
|
step_size=0.2, |
|
|
|
) |
|
|
|
new_hyperparams = attr.evolve( |
|
|
|
SAC_TORCH_CONFIG.hyperparameters, batch_size=16, learning_rate=3e-4 |
|
|
|
) |
|
|
|
config = attr.evolve(SAC_TORCH_CONFIG, hyperparameters=new_hyperparams) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("num_visual", [1, 2]) |
|
|
|
@pytest.mark.parametrize("vis_encode_type", ["resnet", "nature_cnn", "match3"]) |
|
|
|
def test_visual_advanced_sac(vis_encode_type, num_visual): |
|
|
|
env = SimpleEnvironment( |
|
|
|
[BRAIN_NAME], |
|
|
|
use_discrete=True, |
|
|
|
num_visual=num_visual, |
|
|
|
num_vector=0, |
|
|
|
step_size=0.5, |
|
|
|
vis_obs_size=(5, 5, 5) if vis_encode_type == "match3" else (36, 36, 3), |
|
|
|
) |
|
|
|
new_networksettings = attr.evolve( |
|
|
|
SAC_TORCH_CONFIG.network_settings, vis_encode_type=EncoderType(vis_encode_type) |
|
|
|
) |
|
|
|
new_hyperparams = attr.evolve( |
|
|
|
SAC_TORCH_CONFIG.hyperparameters, |
|
|
|
batch_size=16, |
|
|
|
learning_rate=3e-4, |
|
|
|
buffer_init_steps=0, |
|
|
|
) |
|
|
|
config = attr.evolve( |
|
|
|
SAC_TORCH_CONFIG, |
|
|
|
hyperparameters=new_hyperparams, |
|
|
|
network_settings=new_networksettings, |
|
|
|
max_steps=100, |
|
|
|
) |
|
|
|
# The number of steps is pretty small for these encoders |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.5) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
def test_recurrent_sac(use_discrete): |
|
|
|
step_size = 0.2 if use_discrete else 0.5 |
|
|
|
env = MemoryEnvironment( |
|
|
|
[BRAIN_NAME], use_discrete=use_discrete, step_size=step_size |
|
|
|
) |
|
|
|
new_networksettings = attr.evolve( |
|
|
|
SAC_TORCH_CONFIG.network_settings, |
|
|
|
memory=NetworkSettings.MemorySettings(memory_size=16, sequence_length=16), |
|
|
|
) |
|
|
|
new_hyperparams = attr.evolve( |
|
|
|
SAC_TORCH_CONFIG.hyperparameters, |
|
|
|
batch_size=128, |
|
|
|
learning_rate=1e-3, |
|
|
|
buffer_init_steps=1000, |
|
|
|
steps_per_update=2, |
|
|
|
) |
|
|
|
config = attr.evolve( |
|
|
|
SAC_TORCH_CONFIG, |
|
|
|
hyperparameters=new_hyperparams, |
|
|
|
network_settings=new_networksettings, |
|
|
|
max_steps=5000, |
|
|
|
) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
def test_simple_ghost(use_discrete): |
|
|
|
env = SimpleEnvironment( |
|
|
|
[BRAIN_NAME + "?team=0", BRAIN_NAME + "?team=1"], use_discrete=use_discrete |
|
|
|
) |
|
|
|
self_play_settings = SelfPlaySettings( |
|
|
|
play_against_latest_model_ratio=1.0, save_steps=2000, swap_steps=2000 |
|
|
|
) |
|
|
|
config = attr.evolve(PPO_TORCH_CONFIG, self_play=self_play_settings, max_steps=2500) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
def test_simple_ghost_fails(use_discrete): |
|
|
|
env = SimpleEnvironment( |
|
|
|
[BRAIN_NAME + "?team=0", BRAIN_NAME + "?team=1"], use_discrete=use_discrete |
|
|
|
) |
|
|
|
# This config should fail because the ghosted policy is never swapped with a competent policy. |
|
|
|
# Swap occurs after max step is reached. |
|
|
|
self_play_settings = SelfPlaySettings( |
|
|
|
play_against_latest_model_ratio=1.0, save_steps=2000, swap_steps=4000 |
|
|
|
) |
|
|
|
config = attr.evolve(PPO_TORCH_CONFIG, self_play=self_play_settings, max_steps=2500) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=None) |
|
|
|
processed_rewards = [ |
|
|
|
default_reward_processor(rewards) for rewards in env.final_rewards.values() |
|
|
|
] |
|
|
|
success_threshold = 0.9 |
|
|
|
assert any(reward > success_threshold for reward in processed_rewards) and any( |
|
|
|
reward < success_threshold for reward in processed_rewards |
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
def test_simple_asymm_ghost(use_discrete): |
|
|
|
# Make opponent for asymmetric case |
|
|
|
brain_name_opp = BRAIN_NAME + "Opp" |
|
|
|
env = SimpleEnvironment( |
|
|
|
[BRAIN_NAME + "?team=0", brain_name_opp + "?team=1"], use_discrete=use_discrete |
|
|
|
) |
|
|
|
self_play_settings = SelfPlaySettings( |
|
|
|
play_against_latest_model_ratio=1.0, |
|
|
|
save_steps=10000, |
|
|
|
swap_steps=10000, |
|
|
|
team_change=400, |
|
|
|
) |
|
|
|
config = attr.evolve(PPO_TORCH_CONFIG, self_play=self_play_settings, max_steps=4000) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config, brain_name_opp: config}) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
def test_simple_asymm_ghost_fails(use_discrete): |
|
|
|
# Make opponent for asymmetric case |
|
|
|
brain_name_opp = BRAIN_NAME + "Opp" |
|
|
|
env = SimpleEnvironment( |
|
|
|
[BRAIN_NAME + "?team=0", brain_name_opp + "?team=1"], use_discrete=use_discrete |
|
|
|
) |
|
|
|
# This config should fail because the team that us not learning when both have reached |
|
|
|
# max step should be executing the initial, untrained poliy. |
|
|
|
self_play_settings = SelfPlaySettings( |
|
|
|
play_against_latest_model_ratio=0.0, |
|
|
|
save_steps=5000, |
|
|
|
swap_steps=5000, |
|
|
|
team_change=2000, |
|
|
|
) |
|
|
|
config = attr.evolve(PPO_TORCH_CONFIG, self_play=self_play_settings, max_steps=3000) |
|
|
|
check_environment_trains( |
|
|
|
env, {BRAIN_NAME: config, brain_name_opp: config}, success_threshold=None |
|
|
|
) |
|
|
|
processed_rewards = [ |
|
|
|
default_reward_processor(rewards) for rewards in env.final_rewards.values() |
|
|
|
] |
|
|
|
success_threshold = 0.9 |
|
|
|
assert any(reward > success_threshold for reward in processed_rewards) and any( |
|
|
|
reward < success_threshold for reward in processed_rewards |
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(scope="session") |
|
|
|
def simple_record(tmpdir_factory): |
|
|
|
def record_demo(use_discrete, num_visual=0, num_vector=1): |
|
|
|
env = RecordEnvironment( |
|
|
|
[BRAIN_NAME], |
|
|
|
use_discrete=use_discrete, |
|
|
|
num_visual=num_visual, |
|
|
|
num_vector=num_vector, |
|
|
|
n_demos=100, |
|
|
|
) |
|
|
|
# If we want to use true demos, we can solve the env in the usual way |
|
|
|
# Otherwise, we can just call solve to execute the optimal policy |
|
|
|
env.solve() |
|
|
|
agent_info_protos = env.demonstration_protos[BRAIN_NAME] |
|
|
|
meta_data_proto = DemonstrationMetaProto() |
|
|
|
brain_param_proto = BrainParametersProto( |
|
|
|
vector_action_size=[2] if use_discrete else [1], |
|
|
|
vector_action_descriptions=[""], |
|
|
|
vector_action_space_type=discrete if use_discrete else continuous, |
|
|
|
brain_name=BRAIN_NAME, |
|
|
|
is_training=True, |
|
|
|
) |
|
|
|
action_type = "Discrete" if use_discrete else "Continuous" |
|
|
|
demo_path_name = "1DTest" + action_type + ".demo" |
|
|
|
demo_path = str(tmpdir_factory.mktemp("tmp_demo").join(demo_path_name)) |
|
|
|
write_demo(demo_path, meta_data_proto, brain_param_proto, agent_info_protos) |
|
|
|
return demo_path |
|
|
|
|
|
|
|
return record_demo |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
@pytest.mark.parametrize("trainer_config", [PPO_TORCH_CONFIG, SAC_TORCH_CONFIG]) |
|
|
|
def test_gail(simple_record, use_discrete, trainer_config): |
|
|
|
demo_path = simple_record(use_discrete) |
|
|
|
env = SimpleEnvironment([BRAIN_NAME], use_discrete=use_discrete, step_size=0.2) |
|
|
|
bc_settings = BehavioralCloningSettings(demo_path=demo_path, steps=1000) |
|
|
|
reward_signals = { |
|
|
|
RewardSignalType.GAIL: GAILSettings(encoding_size=32, demo_path=demo_path) |
|
|
|
} |
|
|
|
config = attr.evolve( |
|
|
|
trainer_config, |
|
|
|
reward_signals=reward_signals, |
|
|
|
behavioral_cloning=bc_settings, |
|
|
|
max_steps=500, |
|
|
|
) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
def test_gail_visual_ppo(simple_record, use_discrete): |
|
|
|
demo_path = simple_record(use_discrete, num_visual=1, num_vector=0) |
|
|
|
env = SimpleEnvironment( |
|
|
|
[BRAIN_NAME], |
|
|
|
num_visual=1, |
|
|
|
num_vector=0, |
|
|
|
use_discrete=use_discrete, |
|
|
|
step_size=0.2, |
|
|
|
) |
|
|
|
bc_settings = BehavioralCloningSettings(demo_path=demo_path, steps=1500) |
|
|
|
reward_signals = { |
|
|
|
RewardSignalType.GAIL: GAILSettings(encoding_size=32, demo_path=demo_path) |
|
|
|
} |
|
|
|
hyperparams = attr.evolve(PPO_TORCH_CONFIG.hyperparameters, learning_rate=3e-4) |
|
|
|
config = attr.evolve( |
|
|
|
PPO_TORCH_CONFIG, |
|
|
|
reward_signals=reward_signals, |
|
|
|
hyperparameters=hyperparams, |
|
|
|
behavioral_cloning=bc_settings, |
|
|
|
max_steps=1000, |
|
|
|
) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("use_discrete", [True, False]) |
|
|
|
def test_gail_visual_sac(simple_record, use_discrete): |
|
|
|
demo_path = simple_record(use_discrete, num_visual=1, num_vector=0) |
|
|
|
env = SimpleEnvironment( |
|
|
|
[BRAIN_NAME], |
|
|
|
num_visual=1, |
|
|
|
num_vector=0, |
|
|
|
use_discrete=use_discrete, |
|
|
|
step_size=0.2, |
|
|
|
) |
|
|
|
bc_settings = BehavioralCloningSettings(demo_path=demo_path, steps=1000) |
|
|
|
reward_signals = { |
|
|
|
RewardSignalType.GAIL: GAILSettings(encoding_size=32, demo_path=demo_path) |
|
|
|
} |
|
|
|
hyperparams = attr.evolve( |
|
|
|
SAC_TORCH_CONFIG.hyperparameters, learning_rate=3e-4, batch_size=16 |
|
|
|
) |
|
|
|
config = attr.evolve( |
|
|
|
SAC_TORCH_CONFIG, |
|
|
|
reward_signals=reward_signals, |
|
|
|
hyperparameters=hyperparams, |
|
|
|
behavioral_cloning=bc_settings, |
|
|
|
max_steps=500, |
|
|
|
) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9) |