浏览代码

Run pytest on GPU (#4865)

* make tests device-friendly

* mark all tests in test_simple_rl
/MLA-1734-demo-provider
GitHub 4 年前
当前提交
d7f549f9
共有 10 个文件被更改,包括 59 次插入16 次删除
  1. 8
      ml-agents/mlagents/trainers/tests/torch/saver/test_saver.py
  2. 4
      ml-agents/mlagents/trainers/tests/torch/test_action_model.py
  3. 10
      ml-agents/mlagents/trainers/tests/torch/test_distributions.py
  4. 4
      ml-agents/mlagents/trainers/tests/torch/test_encoders.py
  5. 6
      ml-agents/mlagents/trainers/tests/torch/test_hybrid.py
  6. 8
      ml-agents/mlagents/trainers/tests/torch/test_networks.py
  7. 3
      ml-agents/mlagents/trainers/tests/torch/test_simple_rl.py
  8. 4
      ml-agents/mlagents/trainers/torch/encoders.py
  9. 24
      .yamato/pytest-gpu.yml
  10. 4
      pytest.ini

8
ml-agents/mlagents/trainers/tests/torch/saver/test_saver.py


import os
import numpy as np
from mlagents.torch_utils import torch
from mlagents.torch_utils import torch, default_device
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.ppo.optimizer_torch import TorchPPOOptimizer
from mlagents.trainers.model_saver.torch_model_saver import TorchModelSaver

"""
Make sure two policies have the same output for the same input.
"""
policy1.actor_critic = policy1.actor_critic.to(default_device())
policy2.actor_critic = policy2.actor_critic.to(default_device())
decision_step, _ = mb.create_steps_from_behavior_spec(
policy1.behavior_spec, num_agents=1
)

tensor_obs, masks=masks, memories=memories
)
np.testing.assert_array_equal(
log_probs1.all_discrete_tensor, log_probs2.all_discrete_tensor
ModelUtils.to_numpy(log_probs1.all_discrete_tensor),
ModelUtils.to_numpy(log_probs2.all_discrete_tensor),
)

4
ml-agents/mlagents/trainers/tests/torch/test_action_model.py


for _disc in log_probs.all_discrete_list:
assert _disc.shape == (1, 2)
for clp in log_probs.continuous_tensor[0]:
for clp in log_probs.continuous_tensor[0].tolist():
for ent, val in zip(entropies[0], [1.4189, 0.6191, 0.6191]):
for ent, val in zip(entropies[0].tolist(), [1.4189, 0.6191, 0.6191]):
assert ent == pytest.approx(val, abs=0.01)

10
ml-agents/mlagents/trainers/tests/torch/test_distributions.py


optimizer.zero_grad()
loss.backward()
optimizer.step()
for prob in log_prob.flatten():
for prob in log_prob.flatten().tolist():
assert prob == pytest.approx(-2, abs=0.1)

dist_insts = gauss_dist(sample_embedding, masks=masks)
for dist_inst in dist_insts:
log_prob = dist_inst.all_log_prob()
assert log_prob.flatten()[-1] == pytest.approx(0, abs=0.001)
assert log_prob.flatten()[-1].tolist() == pytest.approx(0, abs=0.001)
def test_gaussian_dist_instance():

)
action = dist_instance.sample()
assert action.shape == (1, act_size)
for log_prob in dist_instance.log_prob(torch.zeros((1, act_size))).flatten():
for log_prob in (
dist_instance.log_prob(torch.zeros((1, act_size))).flatten().tolist()
):
for ent in dist_instance.entropy().flatten():
for ent in dist_instance.entropy().flatten().tolist():
# entropy of standard normal at 0, based on 1/2 + ln(sqrt(2pi)sigma)
assert ent == pytest.approx(1.42, abs=0.01)

4
ml-agents/mlagents/trainers/tests/torch/test_encoders.py


norm.update(vec_input3)
# Test normalization
for val in norm(vec_input1)[0]:
for val in norm(vec_input1)[0].tolist():
assert val == pytest.approx(0.707, abs=0.001)
# Test copy normalization

assert compare_models(norm, norm2)
for val in norm2(vec_input1)[0]:
for val in norm2(vec_input1)[0].tolist():
assert val == pytest.approx(0.707, abs=0.001)

6
ml-agents/mlagents/trainers/tests/torch/test_hybrid.py


SAC_TORCH_CONFIG = sac_dummy_config()
@pytest.mark.check_environment_trains
@pytest.mark.parametrize("action_size", [(1, 1), (2, 2), (1, 2), (2, 1)])
def test_hybrid_ppo(action_size):
env = SimpleEnvironment([BRAIN_NAME], action_sizes=action_size, step_size=0.8)

check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9)
@pytest.mark.check_environment_trains
@pytest.mark.parametrize("num_visual", [1, 2])
def test_hybrid_visual_ppo(num_visual):
env = SimpleEnvironment(

check_environment_trains(env, {BRAIN_NAME: config}, training_seed=1336)
@pytest.mark.check_environment_trains
def test_hybrid_recurrent_ppo():
env = MemoryEnvironment([BRAIN_NAME], action_sizes=(1, 1), step_size=0.5)
new_network_settings = attr.evolve(

check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9)
@pytest.mark.check_environment_trains
@pytest.mark.parametrize("action_size", [(1, 1), (2, 2), (1, 2), (2, 1)])
def test_hybrid_sac(action_size):
env = SimpleEnvironment([BRAIN_NAME], action_sizes=action_size, step_size=0.8)

)
@pytest.mark.check_environment_trains
@pytest.mark.parametrize("num_visual", [1, 2])
def test_hybrid_visual_sac(num_visual):
env = SimpleEnvironment(

check_environment_trains(env, {BRAIN_NAME: config})
@pytest.mark.check_environment_trains
def test_hybrid_recurrent_sac():
env = MemoryEnvironment([BRAIN_NAME], action_sizes=(1, 1), step_size=0.5)
new_networksettings = attr.evolve(

8
ml-agents/mlagents/trainers/tests/torch/test_networks.py


loss.backward()
optimizer.step()
# In the last step, values should be close to 1
for _enc in encoded.flatten():
for _enc in encoded.flatten().tolist():
assert _enc == pytest.approx(1.0, abs=0.1)

loss.backward()
optimizer.step()
# In the last step, values should be close to 1
for _enc in encoded.flatten():
for _enc in encoded.flatten().tolist():
assert _enc == pytest.approx(1.0, abs=0.1)

loss.backward()
optimizer.step()
# In the last step, values should be close to 1
for _enc in encoded.flatten():
for _enc in encoded.flatten().tolist():
assert _enc == pytest.approx(1.0, abs=0.1)

optimizer.step()
# In the last step, values should be close to 1
for value in values.values():
for _out in value:
for _out in value.tolist():
assert _out[0] == pytest.approx(1.0, abs=0.1)

3
ml-agents/mlagents/trainers/tests/torch/test_simple_rl.py


PPO_TORCH_CONFIG = ppo_dummy_config()
SAC_TORCH_CONFIG = sac_dummy_config()
# tests in this file won't be tested on GPU machine
pytestmark = pytest.mark.check_environment_trains
@pytest.mark.parametrize("action_sizes", [(0, 1), (1, 0)])
def test_simple_ppo(action_sizes):

4
ml-agents/mlagents/trainers/torch/encoders.py


if not exporting_to_onnx.is_exporting():
visual_obs = visual_obs.permute([0, 3, 1, 2])
hidden = self.conv_layers(visual_obs)
hidden = torch.reshape(hidden, (-1, self.final_flat))
hidden = hidden.reshape(-1, self.final_flat)
return self.dense(hidden)

if not exporting_to_onnx.is_exporting():
visual_obs = visual_obs.permute([0, 3, 1, 2])
hidden = self.conv_layers(visual_obs)
hidden = torch.reshape(hidden, (-1, self.final_flat))
hidden = hidden.reshape(-1, self.final_flat)
return self.dense(hidden)

24
.yamato/pytest-gpu.yml


pytest_gpu:
name: Pytest GPU
agent:
type: Unity::VM::GPU
image: package-ci/ubuntu:stable
flavor: b1.large
commands:
- |
sudo apt-get update && sudo apt-get install -y python3-venv
python3 -m venv venv && source venv/bin/activate
python3 -m pip install pyyaml --index-url https://artifactory.prd.it.unity3d.com/artifactory/api/pypi/pypi/simple
python3 -u -m ml-agents.tests.yamato.setup_venv
python3 -m pip install --progress-bar=off -r test_requirements.txt --index-url https://artifactory.prd.it.unity3d.com/artifactory/api/pypi/pypi/simple
python3 -m pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html --index-url https://artifactory.prd.it.unity3d.com/artifactory/api/pypi/pypi/simple
python3 -m pytest -m "not check_environment_trains" --junitxml=junit/test-results.xml -p no:warnings
triggers:
cancel_old_ci: true
recurring:
- branch: master
frequency: daily
artifacts:
logs:
paths:
- "artifacts/standalone_build.txt"

4
pytest.ini


[pytest]
addopts = --strict-markers
markers =
check_environment_trains: Slow training tests, do not run on yamato
正在加载...
取消
保存