浏览代码

Release 0.7 Fix gym_unity Tests (#1744)

* Change gym-unity tests to use Mock instead of MockCommunicator

* move creation of mock objects into helper functions

* Fix comment

* Fix Codacy errors

* Fix ending whitespace

* Minor fixes
/develop-generalizationTraining-TrainerController
Vincent-Pierre BERGES 6 年前
当前提交
d67eaf05
共有 1 个文件被更改,包括 70 次插入26 次删除
  1. 96
      gym-unity/tests/test_gym.py

96
gym-unity/tests/test_gym.py


from gym import spaces
from gym_unity.envs import UnityEnv, UnityGymException
from mock_communicator import MockCommunicator
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
def test_gym_wrapper(mock_communicator, mock_launcher):
mock_communicator.return_value = MockCommunicator(
discrete_action=False, visual_inputs=0, stack=False, num_agents=1)
# Tests
# Test for incorrect number of agents.
with pytest.raises(UnityGymException):
UnityEnv(' ', use_visual=False, multiagent=True)
env = UnityEnv(' ', use_visual=False)
@mock.patch('gym_unity.envs.unity_env.UnityEnvironment')
def test_gym_wrapper(mock_env):
mock_brain = create_mock_brainparams()
mock_braininfo = create_mock_vector_braininfo()
setup_mock_unityenvironment(mock_env, mock_brain, mock_braininfo)
env = UnityEnv(' ', use_visual=False, multiagent=False)
assert isinstance(env, UnityEnv)
assert isinstance(env.reset(), np.ndarray)
actions = env.action_space.sample()

assert isinstance(done, bool)
assert isinstance(info, dict)
@mock.patch('mlagents.envs.UnityEnvironment.executable_launcher')
@mock.patch('mlagents.envs.UnityEnvironment.get_communicator')
def test_multi_agent(mock_communicator, mock_launcher):
mock_communicator.return_value = MockCommunicator(
discrete_action=False, visual_inputs=0, stack=False, num_agents=2)
# Test for incorrect number of agents.
@mock.patch('gym_unity.envs.unity_env.UnityEnvironment')
def test_multi_agent(mock_env):
mock_brain = create_mock_brainparams()
mock_braininfo = create_mock_vector_braininfo(num_agents=2)
setup_mock_unityenvironment(mock_env, mock_brain, mock_braininfo)
with pytest.raises(UnityGymException):
UnityEnv(' ', multiagent=False)

assert isinstance(done, list)
assert isinstance(info, dict)
mock_env.return_value.academy_name = 'MockAcademy'
mock_brain = mock.Mock();
mock_brain.return_value.number_visual_observations = 0
mock_brain.return_value.num_stacked_vector_observations = 1
mock_brain.return_value.vector_action_space_type = 'discrete'
mock_brain.return_value.vector_observation_space_size = 1
# Unflattened action space
mock_brain.return_value.vector_action_space_size = [2,2,3]
mock_brain = create_mock_brainparams(vector_action_space_type='discrete', vector_action_space_size=[2,2,3])
mock_braininfo = create_mock_vector_braininfo(num_agents=1)
setup_mock_unityenvironment(mock_env, mock_brain, mock_braininfo)
mock_env.return_value.brains = {'MockBrain':mock_brain()}
mock_env.return_value.external_brain_names = ['MockBrain']
env = UnityEnv(' ', use_visual=False, multiagent=False, flatten_branched=True)
assert isinstance(env.action_space, spaces.Discrete)
assert env.action_space.n==12

# Check that False produces a MultiDiscrete
env = UnityEnv(' ', use_visual=False, multiagent=False, flatten_branched=False)
assert isinstance(env.action_space, spaces.MultiDiscrete)
# Helper methods
def create_mock_brainparams(number_visual_observations=0, num_stacked_vector_observations=1,
vector_action_space_type='continuous', vector_observation_space_size=3,
vector_action_space_size=None):
"""
Creates a mock BrainParameters object with parameters.
"""
# Avoid using mutable object as default param
if vector_action_space_size is None:
vector_action_space_size = [2]
mock_brain = mock.Mock();
mock_brain.return_value.number_visual_observations = number_visual_observations
mock_brain.return_value.num_stacked_vector_observations = num_stacked_vector_observations
mock_brain.return_value.vector_action_space_type = vector_action_space_type
mock_brain.return_value.vector_observation_space_size = vector_observation_space_size
mock_brain.return_value.vector_action_space_size = vector_action_space_size
return mock_brain()
def create_mock_vector_braininfo(num_agents = 1):
"""
Creates a mock BrainInfo with vector observations. Imitates constant
vector observations, rewards, dones, and agents.
:int num_agents: Number of "agents" to imitate in your BrainInfo values.
"""
mock_braininfo = mock.Mock()
mock_braininfo.return_value.vector_observations = np.array([num_agents*[1, 2, 3,]])
mock_braininfo.return_value.rewards = num_agents*[1.0]
mock_braininfo.return_value.local_done = num_agents*[False]
mock_braininfo.return_value.text_observations = num_agents*['']
mock_braininfo.return_value.agents = range(0,num_agents)
return mock_braininfo()
def setup_mock_unityenvironment(mock_env, mock_brain, mock_braininfo):
"""
Takes a mock UnityEnvironment and adds the appropriate properties, defined by the mock
BrainParameters and BrainInfo.
:Mock mock_env: A mock UnityEnvironment, usually empty.
:Mock mock_brain: A mock Brain object that specifies the params of this environment.
:Mock mock_braininfo: A mock BrainInfo object that will be returned at each step and reset.
"""
mock_env.return_value.academy_name = 'MockAcademy'
mock_env.return_value.brains = {'MockBrain':mock_brain}
mock_env.return_value.external_brain_names = ['MockBrain']
mock_env.return_value.reset.return_value = {'MockBrain':mock_braininfo}
mock_env.return_value.step.return_value = {'MockBrain':mock_braininfo}
正在加载...
取消
保存