--train Whether to train model, or only run inference [default: False].
--summary-freq=<n> Frequency at which to save training statistics [default: 10000].
--save-freq=<n> Frequency at which to save model [default: 50000].
--gamma=<n> Reward discount rate [default: 0.99].
--gamma=<n> Reward discount rate [default: 0.995].
--lambd=<n> Lambda parameter for GAE [default: 0.95].
--time-horizon=<n> How many steps to collect per agent before adding to buffer [default: 2048].
--beta=<n> Strength of entropy regularization [default: 1e-3].
.format(self._curriculum.get_lesson_number(),
', '.join([str(x)+' -> '+str(config[x]) for x in config])))
else:
logger.info("\nEpisode Reset. In Lesson {0} : \t{1}"
logger.info("\nAcademy Reset. In Lesson {0} : \t{1}"
if self._loaded:
"param2" : [100, 50, 20, 15],
"param3" : [0.2, 0.3, 0.7, 0.9]
}
{
"measure" : "progress",
"thresholds" : [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
"min_lesson_length" : 1,
"signal_smoothing" : false,
"parameters" :
"object_size" : [2.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1]