浏览代码

Reformat using black

/develop/nopreviousactions
Ervin Teng 5 年前
当前提交
cb2d2526
共有 2 个文件被更改,包括 2 次插入7 次删除
  1. 5
      ml-agents/mlagents/trainers/components/reward_signals/gail/signal.py
  2. 4
      ml-agents/mlagents/trainers/components/reward_signals/reward_signal_factory.py

5
ml-agents/mlagents/trainers/components/reward_signals/gail/signal.py


super().check_config(config_dict, param_keys)
def prepare_update(
self,
policy: TFPolicy,
mini_batch: Dict[str, np.ndarray],
num_sequences: int,
self, policy: TFPolicy, mini_batch: Dict[str, np.ndarray], num_sequences: int
) -> Dict[tf.Tensor, Any]:
"""
Prepare inputs for update. .

4
ml-agents/mlagents/trainers/components/reward_signals/reward_signal_factory.py


def create_reward_signal(
policy: TFPolicy,
name: str,
config_entry: Dict[str, Any],
policy: TFPolicy, name: str, config_entry: Dict[str, Any]
) -> RewardSignal:
"""
Creates a reward signal class based on the name and config entry provided as a dict.

正在加载...
取消
保存