浏览代码

[MLA-2017] Move colab notebooks to github (#5399)

/colab-links
GitHub 3 年前
当前提交
c3cc3add
共有 7 个文件被更改,包括 1385 次插入5 次删除
  1. 1
      .pre-commit-config.yaml
  2. 1
      com.unity.ml-agents/CHANGELOG.md
  3. 13
      utils/validate_release_links.py
  4. 494
      colab/Colab_UnityEnvironment_1_Run.ipynb
  5. 588
      colab/Colab_UnityEnvironment_2_Train.ipynb
  6. 293
      colab/Colab_UnityEnvironment_3_SideChannel.ipynb

1
.pre-commit-config.yaml


name: validate release links
language: script
entry: utils/validate_release_links.py
require_serial: true
- id: generate-markdown-docs
name: generate markdown docs
language: python

1
com.unity.ml-agents/CHANGELOG.md


- Fixed NullReferenceException when adding Behavior Parameters with no Agent. (#5382)
#### ml-agents / ml-agents-envs / gym-unity (Python)
- Added a fully connected visual encoder for environments with very small image inputs. (#5351)
- Colab notebooks illustrating the use of the Python API are now part of the repository. (#5399)
### Bug Fixes
- The calculation of the target entropy of SAC with continuous actions was incorrect and has been fixed. (#5372)
- RigidBodySensorComponent now displays a warning if it's used in a way that won't generate useful observations. (#5387)

13
utils/validate_release_links.py


# It matches "mlagents" and "mlagents_envs", accessible as group "package"
# and optionally matches the version, e.g. "==1.2.3"
PIP_INSTALL_PATTERN = re.compile(
r"(python -m )?pip3* install (?P<package>mlagents(_envs)?)(==[0-9]+\.[0-9]+\.[0-9]+(\.dev[0-9]+)?)?"
r"(python -m )?pip3* install (?P<quiet>-q )?(?P<package>mlagents(_envs)?)(==[0-9]+\.[0-9]+\.[0-9]+(\.dev[0-9]+)?)?"
)
TRAINER_INIT_FILE = "ml-agents/mlagents/trainers/__init__.py"

# Just some sanity check that the regex works as expected.
for s, expected in [
("pip install mlagents", True),
("pip3 install mlagents", True),
("pip3 install -q mlagents", True),
("python -m pip install mlagents", True),
("python -m pip install mlagents==1.2.3", True),
("python -m pip install mlagents_envs==1.2.3", True),

match = PIP_INSTALL_PATTERN.search(line)
if match is not None: # if there is a pip install line
package_name = match.group("package")
replacement_version = f"python -m pip install {package_name}=={package_verion}"
quiet_option = match.group("quiet")
replacement_version = (
f"python -m pip install {quiet_option}{package_name}=={package_verion}"
)
updated = PIP_INSTALL_PATTERN.sub(replacement_version, line)
return updated
else: # Don't do anything

:param release_allow_pattern:
"""
bad_lines = []
file_types = {".py", ".md", ".cs"}
file_types = {".py", ".md", ".cs", ".ipynb"}
for file_name in git_ls_files():
if "localized" in file_name or os.path.splitext(file_name)[1] not in file_types:
continue

print(f"Python package version: {package_version}")
release_allow_pattern = re.compile(f"{release_tag}(_docs)?")
pip_allow_pattern = re.compile(
f"python -m pip install mlagents(_envs)?=={package_version}"
fr"python -m pip install (-q )?mlagents(_envs)?=={package_version}"
)
bad_lines = check_all_files(
release_allow_pattern, release_tag, pip_allow_pattern, package_version

494
colab/Colab_UnityEnvironment_1_Run.ipynb


{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Colab-UnityEnvironment-1-Run.ipynb",
"private_outputs": true,
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "pbVXrmEsLXDt"
},
"source": [
"# ML-Agents Open a UnityEnvironment\n",
"<img src=\"https://github.com/Unity-Technologies/ml-agents/blob/release_1/docs/images/image-banner.png?raw=true\" align=\"middle\" width=\"435\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WNKTwHU3d2-l"
},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"metadata": {
"id": "htb-p1hSNX7D"
},
"source": [
"#@title Install Rendering Dependencies { display-mode: \"form\" }\n",
"#@markdown (You only need to run this code when using Colab's hosted runtime)\n",
"\n",
"from IPython.display import HTML, display\n",
"\n",
"def progress(value, max=100):\n",
" return HTML(\"\"\"\n",
" <progress\n",
" value='{value}'\n",
" max='{max}',\n",
" style='width: 100%'\n",
" >\n",
" {value}\n",
" </progress>\n",
" \"\"\".format(value=value, max=max))\n",
"\n",
"pro_bar = display(progress(0, 100), display_id=True)\n",
"\n",
"try:\n",
" import google.colab\n",
" IN_COLAB = True\n",
"except ImportError:\n",
" IN_COLAB = False\n",
"\n",
"if IN_COLAB:\n",
" with open('frame-buffer', 'w') as writefile:\n",
" writefile.write(\"\"\"#taken from https://gist.github.com/jterrace/2911875\n",
"XVFB=/usr/bin/Xvfb\n",
"XVFBARGS=\":1 -screen 0 1024x768x24 -ac +extension GLX +render -noreset\"\n",
"PIDFILE=./frame-buffer.pid\n",
"case \"$1\" in\n",
" start)\n",
" echo -n \"Starting virtual X frame buffer: Xvfb\"\n",
" /sbin/start-stop-daemon --start --quiet --pidfile $PIDFILE --make-pidfile --background --exec $XVFB -- $XVFBARGS\n",
" echo \".\"\n",
" ;;\n",
" stop)\n",
" echo -n \"Stopping virtual X frame buffer: Xvfb\"\n",
" /sbin/start-stop-daemon --stop --quiet --pidfile $PIDFILE\n",
" rm $PIDFILE\n",
" echo \".\"\n",
" ;;\n",
" restart)\n",
" $0 stop\n",
" $0 start\n",
" ;;\n",
" *)\n",
" echo \"Usage: /etc/init.d/xvfb {start|stop|restart}\"\n",
" exit 1\n",
"esac\n",
"exit 0\n",
" \"\"\")\n",
" pro_bar.update(progress(5, 100))\n",
" !apt-get install daemon >/dev/null 2>&1\n",
" pro_bar.update(progress(10, 100))\n",
" !apt-get install wget >/dev/null 2>&1\n",
" pro_bar.update(progress(20, 100))\n",
" !wget http://security.ubuntu.com/ubuntu/pool/main/libx/libxfont/libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb >/dev/null 2>&1\n",
" pro_bar.update(progress(30, 100))\n",
" !wget --output-document xvfb.deb http://security.ubuntu.com/ubuntu/pool/universe/x/xorg-server/xvfb_1.18.4-0ubuntu0.12_amd64.deb >/dev/null 2>&1\n",
" pro_bar.update(progress(40, 100))\n",
" !dpkg -i libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb >/dev/null 2>&1\n",
" pro_bar.update(progress(50, 100))\n",
" !dpkg -i xvfb.deb >/dev/null 2>&1\n",
" pro_bar.update(progress(70, 100))\n",
" !rm libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb\n",
" pro_bar.update(progress(80, 100))\n",
" !rm xvfb.deb\n",
" pro_bar.update(progress(90, 100))\n",
" !bash frame-buffer start\n",
" import os\n",
" os.environ[\"DISPLAY\"] = \":1\"\n",
"pro_bar.update(progress(100, 100))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Pzj7wgapAcDs"
},
"source": [
"### Installing ml-agents"
]
},
{
"cell_type": "code",
"metadata": {
"id": "N8yfQqkbebQ5"
},
"source": [
"try:\n",
" import mlagents\n",
" print(\"ml-agents already installed\")\n",
"except ImportError:\n",
" !pip install -q mlagents==0.25.1\n",
" print(\"Installed ml-agents\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "_u74YhSmW6gD"
},
"source": [
"## Run the Environment"
]
},
{
"cell_type": "code",
"metadata": {
"id": "DpZPbRvRuLZv"
},
"source": [
"#@title Select Environment { display-mode: \"form\" }\n",
"env_id = \"GridWorld\" #@param ['Basic', '3DBall', '3DBallHard', 'GridWorld', 'Hallway', 'VisualHallway', 'CrawlerDynamicTarget', 'CrawlerStaticTarget', 'Bouncer', 'SoccerTwos', 'PushBlock', 'VisualPushBlock', 'WallJump', 'Tennis', 'Reacher', 'Pyramids', 'VisualPyramids', 'Walker', 'FoodCollector', 'VisualFoodCollector', 'StrikersVsGoalie', 'WormStaticTarget', 'WormDynamicTarget']\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "P-r_cB2rqp5x"
},
"source": [
"### Start Environment from the registry"
]
},
{
"cell_type": "code",
"metadata": {
"id": "YSf-WhxbqtLw"
},
"source": [
"# -----------------\n",
"# This code is used to close an env that might not have been closed before\n",
"try:\n",
" env.close()\n",
"except:\n",
" pass\n",
"# -----------------\n",
"\n",
"from mlagents_envs.registry import default_registry\n",
"\n",
"env = default_registry[env_id].make()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "h1lIx3_l24OP"
},
"source": [
"### Reset the environment\n",
"To reset the environment, simply call `env.reset()`. This method takes no argument and returns nothing but will send a signal to the simulation to reset."
]
},
{
"cell_type": "code",
"metadata": {
"id": "dhtl0mpeqxYi"
},
"source": [
"env.reset()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "k1rwnVq2qyoO"
},
"source": [
"### Behavior Specs\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TrD0rSv92T8A"
},
"source": [
"#### Get the Behavior Specs from the Environment"
]
},
{
"cell_type": "code",
"metadata": {
"id": "a7KatdThq7OV"
},
"source": [
"# We will only consider the first Behavior\n",
"behavior_name = list(env.behavior_specs)[0] \n",
"print(f\"Name of the behavior : {behavior_name}\")\n",
"spec = env.behavior_specs[behavior_name]"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "m1L8DHADrAbe"
},
"source": [
"#### Get the Observation Space from the Behavior Specs"
]
},
{
"cell_type": "code",
"metadata": {
"id": "PqDTV5mSrJF5"
},
"source": [
"# Examine the number of observations per Agent\n",
"print(\"Number of observations : \", len(spec.observation_specs))\n",
"\n",
"# Is there a visual observation ?\n",
"# Visual observation have 3 dimensions: Height, Width and number of channels\n",
"vis_obs = any(len(spec.shape) == 3 for spec in spec.observation_specs)\n",
"print(\"Is there a visual observation ?\", vis_obs)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "yVLN_wbG1G5-"
},
"source": [
"#### Get the Action Space from the Behavior Specs"
]
},
{
"cell_type": "code",
"metadata": {
"id": "M9zk1-az1L-G"
},
"source": [
"# Is the Action continuous or multi-discrete ?\n",
"if spec.action_spec.continuous_size > 0:\n",
" print(f\"There are {spec.action_spec.continuous_size} continuous actions\")\n",
"if spec.action_spec.is_discrete():\n",
" print(f\"There are {spec.action_spec.discrete_size} discrete actions\")\n",
"\n",
"\n",
"# How many actions are possible ?\n",
"#print(f\"There are {spec.action_size} action(s)\")\n",
"\n",
"# For discrete actions only : How many different options does each action has ?\n",
"if spec.action_spec.discrete_size > 0:\n",
" for action, branch_size in enumerate(spec.action_spec.discrete_branches):\n",
" print(f\"Action number {action} has {branch_size} different options\")\n",
" \n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "3cX07SGw22Lm"
},
"source": [
"### Stepping the environment"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xO5p0s0prfsQ"
},
"source": [
"#### Get the steps from the Environment\n",
"You can do this with the `env.get_steps(behavior_name)` method. If there are multiple behaviors in the Environment, you can call this method with each of the behavior's names.\n",
"_Note_ This will not move the simulation forward."
]
},
{
"cell_type": "code",
"metadata": {
"id": "ePZtcHXUrjyf"
},
"source": [
"decision_steps, terminal_steps = env.get_steps(behavior_name)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "f-Oj3ix530mx"
},
"source": [
"#### Set actions for each behavior\n",
"You can set the actions for the Agents of a Behavior by calling `env.set_actions()` you will need to specify the behavior name and pass a tensor of dimension 2. The first dimension of the action must be equal to the number of Agents that requested a decision during the step."
]
},
{
"cell_type": "code",
"metadata": {
"id": "KB-nxfbw337g"
},
"source": [
"env.set_actions(behavior_name, spec.action_spec.empty_action(len(decision_steps)))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "MQCybRs84cmq"
},
"source": [
"#### Move the simulation forward\n",
"Call `env.step()` to move the simulation forward. The simulation will progress until an Agent requestes a decision or terminates."
]
},
{
"cell_type": "code",
"metadata": {
"id": "nl3K40ZR4bh2"
},
"source": [
"env.step()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "i9gdextn2vJy"
},
"source": [
"### Observations"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iAMqnnddr8Xo"
},
"source": [
"#### Show the observations for one of the Agents\n",
"`DecisionSteps.obs` is a tuple containing all of the observations for all of the Agents with the provided Behavior name.\n",
"Each value in the tuple is an observation tensor containing the observation data for all of the agents."
]
},
{
"cell_type": "code",
"metadata": {
"id": "OJpta61TsBiO"
},
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"for index, obs_spec in enumerate(spec.observation_specs):\n",
" if len(obs_spec.shape) == 3:\n",
" print(\"Here is the first visual observation\")\n",
" plt.imshow(decision_steps.obs[index][0,:,:,:])\n",
" plt.show()\n",
"\n",
"for index, obs_spec in enumerate(spec.observation_specs):\n",
" if len(obs_spec.shape) == 1:\n",
" print(\"First vector observations : \", decision_steps.obs[index][0,:])"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "y60u21sys8kA"
},
"source": [
"### Run the Environment for a few episodes"
]
},
{
"cell_type": "code",
"metadata": {
"id": "a2uQUsoMtIUK"
},
"source": [
"for episode in range(3):\n",
" env.reset()\n",
" decision_steps, terminal_steps = env.get_steps(behavior_name)\n",
" tracked_agent = -1 # -1 indicates not yet tracking\n",
" done = False # For the tracked_agent\n",
" episode_rewards = 0 # For the tracked_agent\n",
" while not done:\n",
" # Track the first agent we see if not tracking \n",
" # Note : len(decision_steps) = [number of agents that requested a decision]\n",
" if tracked_agent == -1 and len(decision_steps) >= 1:\n",
" tracked_agent = decision_steps.agent_id[0] \n",
"\n",
" # Generate an action for all agents\n",
" action = spec.action_spec.random_action(len(decision_steps))\n",
"\n",
" # Set the actions\n",
" env.set_actions(behavior_name, action)\n",
"\n",
" # Move the simulation forward\n",
" env.step()\n",
"\n",
" # Get the new simulation results\n",
" decision_steps, terminal_steps = env.get_steps(behavior_name)\n",
" if tracked_agent in decision_steps: # The agent requested a decision\n",
" episode_rewards += decision_steps[tracked_agent].reward\n",
" if tracked_agent in terminal_steps: # The agent terminated its episode\n",
" episode_rewards += terminal_steps[tracked_agent].reward\n",
" done = True\n",
" print(f\"Total rewards for episode {episode} is {episode_rewards}\")\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "R-3grXNEtJPa"
},
"source": [
"### Close the Environment to free the port it is using"
]
},
{
"cell_type": "code",
"metadata": {
"id": "vdWG6_SqtNtv"
},
"source": [
"env.close()\n",
"print(\"Closed environment\")"
],
"execution_count": null,
"outputs": []
}
]
}

588
colab/Colab_UnityEnvironment_2_Train.ipynb


{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Colab-UnityEnvironment-2-Train.ipynb",
"private_outputs": true,
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "pbVXrmEsLXDt"
},
"source": [
"# ML-Agents Q-Learning with GridWorld\n",
"<img src=\"https://github.com/Unity-Technologies/ml-agents/blob/release_2/docs/images/gridworld.png?raw=true\" align=\"middle\" width=\"435\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WNKTwHU3d2-l"
},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"metadata": {
"id": "htb-p1hSNX7D"
},
"source": [
"#@title Install Rendering Dependencies { display-mode: \"form\" }\n",
"#@markdown (You only need to run this code when using Colab's hosted runtime)\n",
"\n",
"from IPython.display import HTML, display\n",
"\n",
"def progress(value, max=100):\n",
" return HTML(\"\"\"\n",
" <progress\n",
" value='{value}'\n",
" max='{max}',\n",
" style='width: 100%'\n",
" >\n",
" {value}\n",
" </progress>\n",
" \"\"\".format(value=value, max=max))\n",
"\n",
"pro_bar = display(progress(0, 100), display_id=True)\n",
"\n",
"try:\n",
" import google.colab\n",
" IN_COLAB = True\n",
"except ImportError:\n",
" IN_COLAB = False\n",
"\n",
"if IN_COLAB:\n",
" with open('frame-buffer', 'w') as writefile:\n",
" writefile.write(\"\"\"#taken from https://gist.github.com/jterrace/2911875\n",
"XVFB=/usr/bin/Xvfb\n",
"XVFBARGS=\":1 -screen 0 1024x768x24 -ac +extension GLX +render -noreset\"\n",
"PIDFILE=./frame-buffer.pid\n",
"case \"$1\" in\n",
" start)\n",
" echo -n \"Starting virtual X frame buffer: Xvfb\"\n",
" /sbin/start-stop-daemon --start --quiet --pidfile $PIDFILE --make-pidfile --background --exec $XVFB -- $XVFBARGS\n",
" echo \".\"\n",
" ;;\n",
" stop)\n",
" echo -n \"Stopping virtual X frame buffer: Xvfb\"\n",
" /sbin/start-stop-daemon --stop --quiet --pidfile $PIDFILE\n",
" rm $PIDFILE\n",
" echo \".\"\n",
" ;;\n",
" restart)\n",
" $0 stop\n",
" $0 start\n",
" ;;\n",
" *)\n",
" echo \"Usage: /etc/init.d/xvfb {start|stop|restart}\"\n",
" exit 1\n",
"esac\n",
"exit 0\n",
" \"\"\")\n",
" pro_bar.update(progress(5, 100))\n",
" !apt-get install daemon >/dev/null 2>&1\n",
" pro_bar.update(progress(10, 100))\n",
" !apt-get install wget >/dev/null 2>&1\n",
" pro_bar.update(progress(20, 100))\n",
" !wget http://security.ubuntu.com/ubuntu/pool/main/libx/libxfont/libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb >/dev/null 2>&1\n",
" pro_bar.update(progress(30, 100))\n",
" !wget --output-document xvfb.deb http://security.ubuntu.com/ubuntu/pool/universe/x/xorg-server/xvfb_1.18.4-0ubuntu0.12_amd64.deb >/dev/null 2>&1\n",
" pro_bar.update(progress(40, 100))\n",
" !dpkg -i libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb >/dev/null 2>&1\n",
" pro_bar.update(progress(50, 100))\n",
" !dpkg -i xvfb.deb >/dev/null 2>&1\n",
" pro_bar.update(progress(70, 100))\n",
" !rm libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb\n",
" pro_bar.update(progress(80, 100))\n",
" !rm xvfb.deb\n",
" pro_bar.update(progress(90, 100))\n",
" !bash frame-buffer start\n",
" import os\n",
" os.environ[\"DISPLAY\"] = \":1\"\n",
"pro_bar.update(progress(100, 100))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Pzj7wgapAcDs"
},
"source": [
"### Installing ml-agents"
]
},
{
"cell_type": "code",
"metadata": {
"id": "N8yfQqkbebQ5"
},
"source": [
"try:\n",
" import mlagents\n",
" print(\"ml-agents already installed\")\n",
"except ImportError:\n",
" !pip install -q mlagents==0.25.1\n",
" print(\"Installed ml-agents\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "jz81TWAkbuFY"
},
"source": [
"## Train the GridWorld Environment with Q-Learning"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "29n3dt1Zx5ty"
},
"source": [
"### What is the GridWorld Environment"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pZhVRfdoyPmv"
},
"source": [
"The [GridWorld](https://github.com/Unity-Technologies/ml-agents/blob/release_2/docs/Learning-Environment-Examples.md#gridworld) Environment is a simple Unity visual environment. The Agent is a blue square in a 3x3 grid that is trying to reach a green __`+`__ while avoiding a red __`x`__.\n",
"\n",
"The observation is an image obtained by a camera on top of the grid.\n",
"\n",
"The Action can be one of 5 : \n",
" - Do not move\n",
" - Move up\n",
" - Move down\n",
" - Move right\n",
" - Move left\n",
"\n",
"The Agent receives a reward of _1.0_ if it reaches the green __`+`__, a penalty of _-1.0_ if it touches the red __`x`__ and a penalty of `-0.01` at every step (to force the Agent to solve the task as fast as possible)\n",
"\n",
"__Note__ There are 9 Agents, each in their own grid, at once in the environment. This alows for faster data collection.\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4Gt-ZydJyJWD"
},
"source": [
"### The Q-Learning Algorithm\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KA1qOgfq0Xdv"
},
"source": [
"In this Notebook, we will implement a very simple Q-Learning algorithm. We will use [pytorch](https://pytorch.org/) to do so.\n",
"\n",
"Below is the code to create the neural network we will use in the Notebook."
]
},
{
"cell_type": "code",
"metadata": {
"id": "q79rUp_Sx6A_"
},
"source": [
"import torch\n",
"from typing import Tuple\n",
"from math import floor\n",
"\n",
"\n",
"class VisualQNetwork(torch.nn.Module):\n",
" def __init__(\n",
" self,\n",
" input_shape: Tuple[int, int, int], \n",
" encoding_size: int, \n",
" output_size: int\n",
" ):\n",
" \"\"\"\n",
" Creates a neural network that takes as input a batch of images (3\n",
" dimensional tensors) and outputs a batch of outputs (1 dimensional\n",
" tensors)\n",
" \"\"\"\n",
" super(VisualQNetwork, self).__init__()\n",
" height = input_shape[0]\n",
" width = input_shape[1]\n",
" initial_channels = input_shape[2]\n",
" conv_1_hw = self.conv_output_shape((height, width), 8, 4)\n",
" conv_2_hw = self.conv_output_shape(conv_1_hw, 4, 2)\n",
" self.final_flat = conv_2_hw[0] * conv_2_hw[1] * 32\n",
" self.conv1 = torch.nn.Conv2d(initial_channels, 16, [8, 8], [4, 4])\n",
" self.conv2 = torch.nn.Conv2d(16, 32, [4, 4], [2, 2])\n",
" self.dense1 = torch.nn.Linear(self.final_flat, encoding_size)\n",
" self.dense2 = torch.nn.Linear(encoding_size, output_size)\n",
"\n",
" def forward(self, visual_obs: torch.tensor):\n",
" visual_obs = visual_obs.permute(0, 3, 1, 2)\n",
" conv_1 = torch.relu(self.conv1(visual_obs))\n",
" conv_2 = torch.relu(self.conv2(conv_1))\n",
" hidden = self.dense1(conv_2.reshape([-1, self.final_flat]))\n",
" hidden = torch.relu(hidden)\n",
" hidden = self.dense2(hidden)\n",
" return hidden\n",
"\n",
" @staticmethod\n",
" def conv_output_shape(\n",
" h_w: Tuple[int, int],\n",
" kernel_size: int = 1,\n",
" stride: int = 1,\n",
" pad: int = 0,\n",
" dilation: int = 1,\n",
" ):\n",
" \"\"\"\n",
" Computes the height and width of the output of a convolution layer.\n",
" \"\"\"\n",
" h = floor(\n",
" ((h_w[0] + (2 * pad) - (dilation * (kernel_size - 1)) - 1) / stride) + 1\n",
" )\n",
" w = floor(\n",
" ((h_w[1] + (2 * pad) - (dilation * (kernel_size - 1)) - 1) / stride) + 1\n",
" )\n",
" return h, w\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "EZoaEBAo2L0F"
},
"source": [
"We will now create a few classes to help us store the data we will use to train the Q-Learning algorithm."
]
},
{
"cell_type": "code",
"metadata": {
"id": "L772fe2q39DO"
},
"source": [
"import numpy as np\n",
"from typing import NamedTuple, List\n",
"\n",
"\n",
"class Experience(NamedTuple):\n",
" \"\"\"\n",
" An experience contains the data of one Agent transition.\n",
" - Observation\n",
" - Action\n",
" - Reward\n",
" - Done flag\n",
" - Next Observation\n",
" \"\"\"\n",
"\n",
" obs: np.ndarray\n",
" action: np.ndarray\n",
" reward: float\n",
" done: bool\n",
" next_obs: np.ndarray\n",
"\n",
"# A Trajectory is an ordered sequence of Experiences\n",
"Trajectory = List[Experience]\n",
"\n",
"# A Buffer is an unordered list of Experiences from multiple Trajectories\n",
"Buffer = List[Experience]"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "6HsM1d5I3_Tj"
},
"source": [
"Now, we can create our trainer class. The role of this trainer is to collect data from the Environment according to a Policy, and then train the Q-Network with that data."
]
},
{
"cell_type": "code",
"metadata": {
"id": "KkzBoRJCb18t"
},
"source": [
"from mlagents_envs.environment import ActionTuple, BaseEnv\n",
"from typing import Dict\n",
"import random\n",
"\n",
"\n",
"class Trainer:\n",
" @staticmethod\n",
" def generate_trajectories(\n",
" env: BaseEnv, q_net: VisualQNetwork, buffer_size: int, epsilon: float\n",
" ):\n",
" \"\"\"\n",
" Given a Unity Environment and a Q-Network, this method will generate a\n",
" buffer of Experiences obtained by running the Environment with the Policy\n",
" derived from the Q-Network.\n",
" :param BaseEnv: The UnityEnvironment used.\n",
" :param q_net: The Q-Network used to collect the data.\n",
" :param buffer_size: The minimum size of the buffer this method will return.\n",
" :param epsilon: Will add a random normal variable with standard deviation.\n",
" epsilon to the value heads of the Q-Network to encourage exploration.\n",
" :returns: a Tuple containing the created buffer and the average cumulative\n",
" the Agents obtained.\n",
" \"\"\"\n",
" # Create an empty Buffer\n",
" buffer: Buffer = []\n",
"\n",
" # Reset the environment\n",
" env.reset()\n",
" # Read and store the Behavior Name of the Environment\n",
" behavior_name = list(env.behavior_specs)[0]\n",
" # Read and store the Behavior Specs of the Environment\n",
" spec = env.behavior_specs[behavior_name]\n",
"\n",
" # Create a Mapping from AgentId to Trajectories. This will help us create\n",
" # trajectories for each Agents\n",
" dict_trajectories_from_agent: Dict[int, Trajectory] = {}\n",
" # Create a Mapping from AgentId to the last observation of the Agent\n",
" dict_last_obs_from_agent: Dict[int, np.ndarray] = {}\n",
" # Create a Mapping from AgentId to the last observation of the Agent\n",
" dict_last_action_from_agent: Dict[int, np.ndarray] = {}\n",
" # Create a Mapping from AgentId to cumulative reward (Only for reporting)\n",
" dict_cumulative_reward_from_agent: Dict[int, float] = {}\n",
" # Create a list to store the cumulative rewards obtained so far\n",
" cumulative_rewards: List[float] = []\n",
"\n",
" while len(buffer) < buffer_size: # While not enough data in the buffer\n",
" # Get the Decision Steps and Terminal Steps of the Agents\n",
" decision_steps, terminal_steps = env.get_steps(behavior_name)\n",
"\n",
" # For all Agents with a Terminal Step:\n",
" for agent_id_terminated in terminal_steps:\n",
" # Create its last experience (is last because the Agent terminated)\n",
" last_experience = Experience(\n",
" obs=dict_last_obs_from_agent[agent_id_terminated].copy(),\n",
" reward=terminal_steps[agent_id_terminated].reward,\n",
" done=not terminal_steps[agent_id_terminated].interrupted,\n",
" action=dict_last_action_from_agent[agent_id_terminated].copy(),\n",
" next_obs=terminal_steps[agent_id_terminated].obs[0],\n",
" )\n",
" # Clear its last observation and action (Since the trajectory is over)\n",
" dict_last_obs_from_agent.pop(agent_id_terminated)\n",
" dict_last_action_from_agent.pop(agent_id_terminated)\n",
" # Report the cumulative reward\n",
" cumulative_reward = (\n",
" dict_cumulative_reward_from_agent.pop(agent_id_terminated)\n",
" + terminal_steps[agent_id_terminated].reward\n",
" )\n",
" cumulative_rewards.append(cumulative_reward)\n",
" # Add the Trajectory and the last experience to the buffer\n",
" buffer.extend(dict_trajectories_from_agent.pop(agent_id_terminated))\n",
" buffer.append(last_experience)\n",
"\n",
" # For all Agents with a Decision Step:\n",
" for agent_id_decisions in decision_steps:\n",
" # If the Agent does not have a Trajectory, create an empty one\n",
" if agent_id_decisions not in dict_trajectories_from_agent:\n",
" dict_trajectories_from_agent[agent_id_decisions] = []\n",
" dict_cumulative_reward_from_agent[agent_id_decisions] = 0\n",
"\n",
" # If the Agent requesting a decision has a \"last observation\"\n",
" if agent_id_decisions in dict_last_obs_from_agent:\n",
" # Create an Experience from the last observation and the Decision Step\n",
" exp = Experience(\n",
" obs=dict_last_obs_from_agent[agent_id_decisions].copy(),\n",
" reward=decision_steps[agent_id_decisions].reward,\n",
" done=False,\n",
" action=dict_last_action_from_agent[agent_id_decisions].copy(),\n",
" next_obs=decision_steps[agent_id_decisions].obs[0],\n",
" )\n",
" # Update the Trajectory of the Agent and its cumulative reward\n",
" dict_trajectories_from_agent[agent_id_decisions].append(exp)\n",
" dict_cumulative_reward_from_agent[agent_id_decisions] += (\n",
" decision_steps[agent_id_decisions].reward\n",
" )\n",
" # Store the observation as the new \"last observation\"\n",
" dict_last_obs_from_agent[agent_id_decisions] = (\n",
" decision_steps[agent_id_decisions].obs[0]\n",
" )\n",
"\n",
" # Generate an action for all the Agents that requested a decision\n",
" # Compute the values for each action given the observation\n",
" actions_values = (\n",
" q_net(torch.from_numpy(decision_steps.obs[0])).detach().numpy()\n",
" )\n",
" # Add some noise with epsilon to the values\n",
" actions_values += epsilon * (\n",
" np.random.randn(actions_values.shape[0], actions_values.shape[1])\n",
" ).astype(np.float32)\n",
" # Pick the best action using argmax\n",
" actions = np.argmax(actions_values, axis=1)\n",
" actions.resize((len(decision_steps), 1))\n",
" # Store the action that was picked, it will be put in the trajectory later\n",
" for agent_index, agent_id in enumerate(decision_steps.agent_id):\n",
" dict_last_action_from_agent[agent_id] = actions[agent_index]\n",
"\n",
" # Set the actions in the environment\n",
" # Unity Environments expect ActionTuple instances.\n",
" action_tuple = ActionTuple()\n",
" action_tuple.add_discrete(actions)\n",
" env.set_actions(behavior_name, action_tuple)\n",
" # Perform a step in the simulation\n",
" env.step()\n",
" return buffer, np.mean(cumulative_rewards)\n",
"\n",
" @staticmethod\n",
" def update_q_net(\n",
" q_net: VisualQNetwork, \n",
" optimizer: torch.optim, \n",
" buffer: Buffer, \n",
" action_size: int\n",
" ):\n",
" \"\"\"\n",
" Performs an update of the Q-Network using the provided optimizer and buffer\n",
" \"\"\"\n",
" BATCH_SIZE = 1000\n",
" NUM_EPOCH = 3\n",
" GAMMA = 0.9\n",
" batch_size = min(len(buffer), BATCH_SIZE)\n",
" random.shuffle(buffer)\n",
" # Split the buffer into batches\n",
" batches = [\n",
" buffer[batch_size * start : batch_size * (start + 1)]\n",
" for start in range(int(len(buffer) / batch_size))\n",
" ]\n",
" for _ in range(NUM_EPOCH):\n",
" for batch in batches:\n",
" # Create the Tensors that will be fed in the network\n",
" obs = torch.from_numpy(np.stack([ex.obs for ex in batch]))\n",
" reward = torch.from_numpy(\n",
" np.array([ex.reward for ex in batch], dtype=np.float32).reshape(-1, 1)\n",
" )\n",
" done = torch.from_numpy(\n",
" np.array([ex.done for ex in batch], dtype=np.float32).reshape(-1, 1)\n",
" )\n",
" action = torch.from_numpy(np.stack([ex.action for ex in batch]))\n",
" next_obs = torch.from_numpy(np.stack([ex.next_obs for ex in batch]))\n",
"\n",
" # Use the Bellman equation to update the Q-Network\n",
" target = (\n",
" reward\n",
" + (1.0 - done)\n",
" * GAMMA\n",
" * torch.max(q_net(next_obs).detach(), dim=1, keepdim=True).values\n",
" )\n",
" mask = torch.zeros((len(batch), action_size))\n",
" mask.scatter_(1, action, 1)\n",
" prediction = torch.sum(qnet(obs) * mask, dim=1, keepdim=True)\n",
" criterion = torch.nn.MSELoss()\n",
" loss = criterion(prediction, target)\n",
"\n",
" # Perform the backpropagation\n",
" optimizer.zero_grad()\n",
" loss.backward()\n",
" optimizer.step()\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "vcU4ZMAEWCvX"
},
"source": [
"### Run Training"
]
},
{
"cell_type": "code",
"metadata": {
"id": "_lIHijQfbYjh"
},
"source": [
"# -----------------\n",
"# This code is used to close an env that might not have been closed before\n",
"try:\n",
" env.close()\n",
"except:\n",
" pass\n",
"# -----------------\n",
"\n",
"from mlagents_envs.registry import default_registry\n",
"from mlagents_envs.environment import UnityEnvironment\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"# Create the GridWorld Environment from the registry\n",
"env = default_registry[\"GridWorld\"].make()\n",
"print(\"GridWorld environment created.\")\n",
"\n",
"# Create a new Q-Network. \n",
"qnet = VisualQNetwork((64, 84, 3), 126, 5)\n",
"\n",
"experiences: Buffer = []\n",
"optim = torch.optim.Adam(qnet.parameters(), lr= 0.001)\n",
"\n",
"cumulative_rewards: List[float] = []\n",
"\n",
"# The number of training steps that will be performed\n",
"NUM_TRAINING_STEPS = 70\n",
"# The number of experiences to collect per training step\n",
"NUM_NEW_EXP = 1000\n",
"# The maximum size of the Buffer\n",
"BUFFER_SIZE = 10000\n",
"\n",
"for n in range(NUM_TRAINING_STEPS):\n",
" new_exp,_ = Trainer.generate_trajectories(env, qnet, NUM_NEW_EXP, epsilon=0.1)\n",
" random.shuffle(experiences)\n",
" if len(experiences) > BUFFER_SIZE:\n",
" experiences = experiences[:BUFFER_SIZE]\n",
" experiences.extend(new_exp)\n",
" Trainer.update_q_net(qnet, optim, experiences, 5)\n",
" _, rewards = Trainer.generate_trajectories(env, qnet, 100, epsilon=0)\n",
" cumulative_rewards.append(rewards)\n",
" print(\"Training step \", n+1, \"\\treward \", rewards)\n",
"\n",
"\n",
"env.close()\n",
"\n",
"# Show the training graph\n",
"plt.plot(range(NUM_TRAINING_STEPS), cumulative_rewards)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "2ihb_gmYLUsH"
},
"source": [
""
],
"execution_count": null,
"outputs": []
}
]
}

293
colab/Colab_UnityEnvironment_3_SideChannel.ipynb


{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Colab-UnityEnvironment-3-SideChannel.ipynb",
"private_outputs": true,
"provenance": [],
"collapsed_sections": [],
"toc_visible": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "pbVXrmEsLXDt"
},
"source": [
"# ML-Agents Use SideChannels\n",
"<img src=\"https://raw.githubusercontent.com/Unity-Technologies/ml-agents/release_1/docs/images/3dball_big.png\" align=\"middle\" width=\"435\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WNKTwHU3d2-l"
},
"source": [
"## Setup"
]
},
{
"cell_type": "code",
"metadata": {
"id": "htb-p1hSNX7D"
},
"source": [
"#@title Install Rendering Dependencies { display-mode: \"form\" }\n",
"#@markdown (You only need to run this code when using Colab's hosted runtime)\n",
"\n",
"from IPython.display import HTML, display\n",
"\n",
"def progress(value, max=100):\n",
" return HTML(\"\"\"\n",
" <progress\n",
" value='{value}'\n",
" max='{max}',\n",
" style='width: 100%'\n",
" >\n",
" {value}\n",
" </progress>\n",
" \"\"\".format(value=value, max=max))\n",
"\n",
"pro_bar = display(progress(0, 100), display_id=True)\n",
"\n",
"try:\n",
" import google.colab\n",
" IN_COLAB = True\n",
"except ImportError:\n",
" IN_COLAB = False\n",
"\n",
"if IN_COLAB:\n",
" with open('frame-buffer', 'w') as writefile:\n",
" writefile.write(\"\"\"#taken from https://gist.github.com/jterrace/2911875\n",
"XVFB=/usr/bin/Xvfb\n",
"XVFBARGS=\":1 -screen 0 1024x768x24 -ac +extension GLX +render -noreset\"\n",
"PIDFILE=./frame-buffer.pid\n",
"case \"$1\" in\n",
" start)\n",
" echo -n \"Starting virtual X frame buffer: Xvfb\"\n",
" /sbin/start-stop-daemon --start --quiet --pidfile $PIDFILE --make-pidfile --background --exec $XVFB -- $XVFBARGS\n",
" echo \".\"\n",
" ;;\n",
" stop)\n",
" echo -n \"Stopping virtual X frame buffer: Xvfb\"\n",
" /sbin/start-stop-daemon --stop --quiet --pidfile $PIDFILE\n",
" rm $PIDFILE\n",
" echo \".\"\n",
" ;;\n",
" restart)\n",
" $0 stop\n",
" $0 start\n",
" ;;\n",
" *)\n",
" echo \"Usage: /etc/init.d/xvfb {start|stop|restart}\"\n",
" exit 1\n",
"esac\n",
"exit 0\n",
" \"\"\")\n",
" pro_bar.update(progress(5, 100))\n",
" !apt-get install daemon >/dev/null 2>&1\n",
" pro_bar.update(progress(10, 100))\n",
" !apt-get install wget >/dev/null 2>&1\n",
" pro_bar.update(progress(20, 100))\n",
" !wget http://security.ubuntu.com/ubuntu/pool/main/libx/libxfont/libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb >/dev/null 2>&1\n",
" pro_bar.update(progress(30, 100))\n",
" !wget --output-document xvfb.deb http://security.ubuntu.com/ubuntu/pool/universe/x/xorg-server/xvfb_1.18.4-0ubuntu0.12_amd64.deb >/dev/null 2>&1\n",
" pro_bar.update(progress(40, 100))\n",
" !dpkg -i libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb >/dev/null 2>&1\n",
" pro_bar.update(progress(50, 100))\n",
" !dpkg -i xvfb.deb >/dev/null 2>&1\n",
" pro_bar.update(progress(70, 100))\n",
" !rm libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb\n",
" pro_bar.update(progress(80, 100))\n",
" !rm xvfb.deb\n",
" pro_bar.update(progress(90, 100))\n",
" !bash frame-buffer start\n",
" import os\n",
" os.environ[\"DISPLAY\"] = \":1\"\n",
"pro_bar.update(progress(100, 100))"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "Pzj7wgapAcDs"
},
"source": [
"### Installing ml-agents"
]
},
{
"cell_type": "code",
"metadata": {
"id": "N8yfQqkbebQ5"
},
"source": [
"try:\n",
" import mlagents\n",
" print(\"ml-agents already installed\")\n",
"except ImportError:\n",
" !pip install -q mlagents==0.25.1\n",
" print(\"Installed ml-agents\")"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "_u74YhSmW6gD"
},
"source": [
"## Side Channel\n",
"\n",
"SideChannels are objects that can be passed to the constructor of a UnityEnvironment or the `make()` method of a registry entry to send non Reinforcement Learning related data. \n",
"More information available [here](https://github.com/Unity-Technologies/ml-agents/blob/release_1/docs/Python-API.md#communicating-additional-information-with-the-environment)\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "U4RXnhLRk7Uc"
},
"source": [
"### Engine Configuration SideChannel\n",
"The [Engine Configuration Side Channel](https://github.com/Unity-Technologies/ml-agents/blob/release_1/docs/Python-API.md#engineconfigurationchannel) is used to configure how the Unity Engine should run. \n",
"We will use the GridWorld environment to demonstrate how to use the EngineConfigurationChannel. "
]
},
{
"cell_type": "code",
"metadata": {
"id": "YSf-WhxbqtLw"
},
"source": [
"# -----------------\n",
"# This code is used to close an env that might not have been closed before\n",
"try:\n",
" env.close()\n",
"except:\n",
" pass\n",
"# -----------------\n",
"\n",
"from mlagents_envs.registry import default_registry\n",
"env_id = \"GridWorld\"\n",
"\n",
"# Import the EngineConfigurationChannel class\n",
"from mlagents_envs.side_channel.engine_configuration_channel import EngineConfigurationChannel\n",
"\n",
"# Create the side channel\n",
"engine_config_channel = EngineConfigurationChannel()\n",
"\n",
"# Pass the side channel to the make method\n",
"# Note, the make method takes a LIST of SideChannel as input\n",
"env = default_registry[env_id].make(side_channels = [engine_config_channel])\n",
"\n",
"# Configure the Unity Engine\n",
"engine_config_channel.set_configuration_parameters(target_frame_rate = 30)\n",
"\n",
"env.reset()\n",
"\n",
"# ... \n",
"# Perform experiment on environment\n",
"# ...\n",
"\n",
"env.close()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "h1lIx3_l24OP"
},
"source": [
"### Environment Parameters Channel\n",
"The [Environment Parameters Side Channel](https://github.com/Unity-Technologies/ml-agents/blob/release_1/docs/Python-API.md#environmentparameters) is used to modify environment parameters during the simulation. \n",
"We will use the GridWorld environment to demonstrate how to use the EngineConfigurationChannel. "
]
},
{
"cell_type": "code",
"metadata": {
"id": "dhtl0mpeqxYi"
},
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"# -----------------\n",
"# This code is used to close an env that might not have been closed before\n",
"try:\n",
" env.close()\n",
"except:\n",
" pass\n",
"# -----------------\n",
"\n",
"from mlagents_envs.registry import default_registry\n",
"env_id = \"GridWorld\"\n",
"\n",
"# Import the EngineConfigurationChannel class\n",
"from mlagents_envs.side_channel.environment_parameters_channel import EnvironmentParametersChannel\n",
"\n",
"# Create the side channel\n",
"env_parameters = EnvironmentParametersChannel()\n",
"\n",
"# Pass the side channel to the make method\n",
"# Note, the make method takes a LIST of SideChannel as input\n",
"env = default_registry[env_id].make(side_channels = [env_parameters])\n",
"\n",
"env.reset()\n",
"behavior_name = list(env.behavior_specs)[0] \n",
"\n",
"print(\"Observation without changing the environment parameters\")\n",
"decision_steps, terminal_steps = env.get_steps(behavior_name)\n",
"plt.imshow(decision_steps.obs[0][0,:,:,:])\n",
"plt.show()\n",
"\n",
"print(\"Increasing the dimensions of the grid from 5 to 7\")\n",
"env_parameters.set_float_parameter(\"gridSize\", 7)\n",
"print(\"Increasing the number of X from 1 to 5\")\n",
"env_parameters.set_float_parameter(\"numObstacles\", 5)\n",
"\n",
"# Any change to a SideChannel will only be effective after a step or reset\n",
"# In the GridWorld Environment, the grid's dimensions can only change at reset\n",
"env.reset()\n",
"\n",
"\n",
"decision_steps, terminal_steps = env.get_steps(behavior_name)\n",
"plt.imshow(decision_steps.obs[0][0,:,:,:])\n",
"plt.show()\n",
"\n",
"\n",
"\n",
"env.close()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "k1rwnVq2qyoO"
},
"source": [
"### Creating your own Side Channels\n",
"You can send various kinds of data between a Unity Environment and Python but you will need to [create your own implementation of a Side Channel](https://github.com/Unity-Technologies/ml-agents/blob/release_1/docs/Custom-SideChannels.md#custom-side-channels) for advanced use cases.\n"
]
}
]
}
正在加载...
取消
保存