|
|
|
|
|
|
|
|
|
|
# Create the encoder ops for current and next visual input. |
|
|
|
# Note that these encoders are siamese. |
|
|
|
encoded_visual = self.policy_model.create_visual_observation_encoder( |
|
|
|
encoded_visual = LearningModel.create_visual_observation_encoder( |
|
|
|
self.policy_model.visual_in[i], |
|
|
|
self.encoding_size, |
|
|
|
LearningModel.swish, |
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
encoded_next_visual = self.policy_model.create_visual_observation_encoder( |
|
|
|
encoded_next_visual = LearningModel.create_visual_observation_encoder( |
|
|
|
self.next_visual_in[i], |
|
|
|
self.encoding_size, |
|
|
|
LearningModel.swish, |
|
|
|
|
|
|
name="curiosity_next_vector_observation", |
|
|
|
) |
|
|
|
|
|
|
|
encoded_vector_obs = self.policy_model.create_vector_observation_encoder( |
|
|
|
encoded_vector_obs = LearningModel.create_vector_observation_encoder( |
|
|
|
self.policy_model.vector_in, |
|
|
|
self.encoding_size, |
|
|
|
LearningModel.swish, |
|
|
|
|
|
|
) |
|
|
|
encoded_next_vector_obs = self.policy_model.create_vector_observation_encoder( |
|
|
|
encoded_next_vector_obs = LearningModel.create_vector_observation_encoder( |
|
|
|
self.next_vector_in, |
|
|
|
self.encoding_size, |
|
|
|
LearningModel.swish, |
|
|
|