|
|
|
|
|
|
env = SimpleEnvironment([BRAIN_NAME], action_sizes=action_size, step_size=0.8) |
|
|
|
new_network_settings = attr.evolve(PPO_TORCH_CONFIG.network_settings) |
|
|
|
new_hyperparams = attr.evolve( |
|
|
|
PPO_TORCH_CONFIG.hyperparameters, batch_size=64, buffer_size=1024, learning_rate=1e-3 |
|
|
|
PPO_TORCH_CONFIG.hyperparameters, |
|
|
|
batch_size=64, |
|
|
|
buffer_size=1024, |
|
|
|
learning_rate=1e-3, |
|
|
|
) |
|
|
|
config = attr.evolve( |
|
|
|
PPO_TORCH_CONFIG, |
|
|
|
|
|
|
) |
|
|
|
check_environment_trains( |
|
|
|
env, {BRAIN_NAME: config}, success_threshold=0.9 |
|
|
|
) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("num_visual", [1, 2]) |
|
|
|
|
|
|
config = attr.evolve( |
|
|
|
SAC_TORCH_CONFIG, hyperparameters=new_hyperparams, max_steps=2500 |
|
|
|
) |
|
|
|
check_environment_trains( |
|
|
|
env, {BRAIN_NAME: config}, success_threshold=0.9 |
|
|
|
) |
|
|
|
check_environment_trains(env, {BRAIN_NAME: config}, success_threshold=0.9) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("num_visual", [1, 2]) |
|
|
|