浏览代码

Merge branch 'master' into self-play-mutex

/develop/cubewars
Andrew Cohen 5 年前
当前提交
a7a372b9
共有 18 个文件被更改,包括 333 次插入22 次删除
  1. 12
      Project/Assets/ML-Agents/Examples/FoodCollector/Scripts/FoodCollectorSettings.cs
  2. 3
      com.unity.ml-agents/CHANGELOG.md
  3. 28
      com.unity.ml-agents/Runtime/Academy.cs
  4. 16
      com.unity.ml-agents/Runtime/Communicator/ICommunicator.cs
  5. 28
      com.unity.ml-agents/Runtime/Communicator/RpcCommunicator.cs
  6. 7
      com.unity.ml-agents/Runtime/SideChannels/EngineConfigurationChannel.cs
  7. 4
      docs/Getting-Started.md
  8. 7
      docs/Using-Tensorboard.md
  9. 18
      ml-agents-envs/mlagents_envs/environment.py
  10. 21
      ml-agents/mlagents/trainers/agent_processor.py
  11. 10
      ml-agents/mlagents/trainers/env_manager.py
  12. 6
      ml-agents/mlagents/trainers/simple_env_manager.py
  13. 19
      ml-agents/mlagents/trainers/subprocess_env_manager.py
  14. 34
      ml-agents/mlagents/trainers/tests/test_agent_processor.py
  15. 11
      ml-agents/mlagents/trainers/tests/test_subprocess_env_manager.py
  16. 72
      com.unity.ml-agents/Runtime/SideChannels/StatsSideChannel.cs
  17. 11
      com.unity.ml-agents/Runtime/SideChannels/StatsSideChannel.cs.meta
  18. 48
      ml-agents-envs/mlagents_envs/side_channel/stats_side_channel.py

12
Project/Assets/ML-Agents/Examples/FoodCollector/Scripts/FoodCollectorSettings.cs


using UnityEngine;
using UnityEngine.UI;
using MLAgents;
using MLAgents.SideChannels;
public class FoodCollectorSettings : MonoBehaviour
{

public int totalScore;
public Text scoreText;
StatsSideChannel m_statsSideChannel;
m_statsSideChannel = Academy.Instance.GetSideChannel<StatsSideChannel>();
}
public void EnvironmentReset()

public void Update()
{
scoreText.text = $"Score: {totalScore}";
// Send stats via SideChannel so that they'll appear in TensorBoard.
// These values get averaged every summary_frequency steps, so we don't
// need to send every Update() call.
if ((Time.frameCount % 100)== 0)
{
m_statsSideChannel?.AddStat("TotalScore", totalScore);
}
}
}

3
com.unity.ml-agents/CHANGELOG.md


### Minor Changes
- Format of console output has changed slightly and now matches the name of the model/summary directory. (#3630, #3616)
- Raise the wall in CrawlerStatic scene to prevent Agent from falling off. (#3650)
- Added a feature to allow sending stats from C# environments to TensorBoard (and other python StatsWriters). To do this from your code, use `Academy.Instance.GetSideChannel<StatsSideChannel>().AddStat(key, value)` (#3660)
- Fixed an issue where switching models using `SetModel()` during training would use an excessive amount of memory. (#3664)
- Environment subprocesses now close immediately on timeout or wrong API version. (#3679)
## [0.15.0-preview] - 2020-03-18
### Major Changes

28
com.unity.ml-agents/Runtime/Academy.cs


}
/// <summary>
/// Returns the SideChannel of Type T if there is one registered, or null if it doesn't.
/// If there are multiple SideChannels of the same type registered, the returned instance is arbitrary.
/// </summary>
/// <typeparam name="T"></typeparam>
/// <returns></returns>
public T GetSideChannel<T>() where T: SideChannel
{
return Communicator?.GetSideChannel<T>();
}
/// <summary>
/// Returns all SideChannels of Type T that are registered. Use <see cref="GetSideChannel{T}()"/> if possible,
/// as that does not make any memory allocations.
/// </summary>
/// <typeparam name="T"></typeparam>
/// <returns></returns>
public List<T> GetSideChannels<T>() where T: SideChannel
{
if (Communicator == null)
{
// Make sure we return a non-null List.
return new List<T>();
}
return Communicator.GetSideChannels<T>();
}
/// <summary>
/// Disable stepping of the Academy during the FixedUpdate phase. If this is called, the Academy must be
/// stepped manually by the user by calling Academy.EnvironmentStep().
/// </summary>

{
Communicator.RegisterSideChannel(new EngineConfigurationChannel());
Communicator.RegisterSideChannel(floatProperties);
Communicator.RegisterSideChannel(new StatsSideChannel());
// We try to exchange the first message with Python. If this fails, it means
// no Python Process is ready to train the environment. In this case, the
//environment must use Inference.

16
com.unity.ml-agents/Runtime/Communicator/ICommunicator.cs


/// </summary>
/// <param name="sideChannel"> The side channel to be unregistered.</param>
void UnregisterSideChannel(SideChannel sideChannel);
/// <summary>
/// Returns the SideChannel of Type T if there is one registered, or null if it doesn't.
/// If there are multiple SideChannels of the same type registered, the returned instance is arbitrary.
/// </summary>
/// <typeparam name="T"></typeparam>
/// <returns></returns>
T GetSideChannel<T>() where T : SideChannel;
/// <summary>
/// Returns all SideChannels of Type T that are registered. Use <see cref="GetSideChannel{T}()"/> if possible,
/// as that does not make any memory allocations.
/// </summary>
/// <typeparam name="T"></typeparam>
/// <returns></returns>
List<T> GetSideChannels<T>() where T : SideChannel;
}
}

28
com.unity.ml-agents/Runtime/Communicator/RpcCommunicator.cs


}
}
/// <inheritdoc/>
public T GetSideChannel<T>() where T: SideChannel
{
foreach (var sc in m_SideChannels.Values)
{
if (sc.GetType() == typeof(T))
{
return (T) sc;
}
}
return null;
}
/// <inheritdoc/>
public List<T> GetSideChannels<T>() where T: SideChannel
{
var output = new List<T>();
foreach (var sc in m_SideChannels.Values)
{
if (sc.GetType() == typeof(T))
{
output.Add((T) sc);
}
}
return output;
}
/// <summary>
/// Grabs the messages that the registered side channels will send to Python at the current step
/// into a singe byte array.

7
com.unity.ml-agents/Runtime/SideChannels/EngineConfigurationChannel.cs


/// </summary>
public class EngineConfigurationChannel : SideChannel
{
private const string k_EngineConfigId = "e951342c-4f7e-11ea-b238-784f4387d1f7";
const string k_EngineConfigId = "e951342c-4f7e-11ea-b238-784f4387d1f7";
/// Initializes the side channel.
/// Initializes the side channel. The constructor is internal because only one instance is
/// supported at a time, and is created by the Academy.
public EngineConfigurationChannel()
internal EngineConfigurationChannel()
{
ChannelId = new Guid(k_EngineConfigId);
}

4
docs/Getting-Started.md


Depending on your version of Unity, it may be necessary to change the **Scripting Runtime Version** of your project. This can be done as follows:
1. Launch Unity
2. On the Projects dialog, choose the **Open** option at the top of the window.
1. Launch Unity Hub
2. On the Projects dialog, choose the **Add** option at the top of the window.
3. Using the file dialog that opens, locate the `Project` folder
within the ML-Agents toolkit project and click **Open**.
4. Go to **Edit** > **Project Settings** > **Player**

7
docs/Using-Tensorboard.md


taken between two observations.
* `Losses/Cloning Loss` (BC) - The mean magnitude of the behavioral cloning loss. Corresponds to how well the model imitates the demonstration data.
## Custom Metrics from C#
To get custom metrics from a C# environment into Tensorboard, you can use the StatsSideChannel:
```csharp
var statsSideChannel = Academy.Instance.GetSideChannel<StatsSideChannel>();
statsSideChannel.AddStat("MyMetric", 1.0);
```

18
ml-agents-envs/mlagents_envs/environment.py


aca_output = self.send_academy_parameters(rl_init_parameters_in)
aca_params = aca_output.rl_initialization_output
except UnityTimeOutException:
self._close()
self._close(0)
self._close()
self._close(0)
raise UnityEnvironmentException(
f"The communication API version is not compatible between Unity and python. "
f"Python API: {UnityEnvironment.API_VERSION}, Unity API: {unity_communicator_version}.\n "

def executable_launcher(self, file_name, docker_training, no_graphics, args):
launch_string = self.validate_environment_path(file_name)
if launch_string is None:
self._close()
self._close(0)
raise UnityEnvironmentException(
f"Couldn't launch the {file_name} environment. Provided filename does not match any environments."
)

else:
raise UnityEnvironmentException("No Unity environment is loaded.")
def _close(self):
def _close(self, timeout: Optional[int] = None) -> None:
"""
Close the communicator and environment subprocess (if necessary).
:int timeout: [Optional] Number of seconds to wait for the environment to shut down before
force-killing it. Defaults to `self.timeout_wait`.
"""
if timeout is None:
timeout = self.timeout_wait
self.proc1.wait(timeout=self.timeout_wait)
self.proc1.wait(timeout=timeout)
signal_name = self.returncode_to_signal_name(self.proc1.returncode)
signal_name = f" ({signal_name})" if signal_name else ""
return_info = f"Environment shut down with return code {self.proc1.returncode}{signal_name}."

21
ml-agents/mlagents/trainers/agent_processor.py


from collections import defaultdict, Counter, deque
from mlagents_envs.base_env import BatchedStepResult, StepResult
from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod
from mlagents.trainers.trajectory import Trajectory, AgentExperience
from mlagents.trainers.policy.tf_policy import TFPolicy
from mlagents.trainers.policy import Policy

self.behavior_id
)
self.publish_trajectory_queue(self.trajectory_queue)
def record_environment_stats(
self, env_stats: Dict[str, Tuple[float, StatsAggregationMethod]], worker_id: int
) -> None:
"""
Pass stats from the environment to the StatsReporter.
Depending on the StatsAggregationMethod, either StatsReporter.add_stat or StatsReporter.set_stat is used.
The worker_id is used to determin whether StatsReporter.set_stat should be used.
:param env_stats:
:param worker_id:
:return:
"""
for stat_name, (val, agg_type) in env_stats.items():
if agg_type == StatsAggregationMethod.AVERAGE:
self.stats_reporter.add_stat(stat_name, val)
elif agg_type == StatsAggregationMethod.MOST_RECENT:
# In order to prevent conflicts between multiple environments,
# only stats from the first environment are recorded.
if worker_id == 0:
self.stats_reporter.set_stat(stat_name, val)

10
ml-agents/mlagents/trainers/env_manager.py


from abc import ABC, abstractmethod
import logging
from typing import List, Dict, NamedTuple, Iterable
from typing import List, Dict, NamedTuple, Iterable, Tuple
from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod
from mlagents.trainers.brain import BrainParameters
from mlagents.trainers.policy.tf_policy import TFPolicy
from mlagents.trainers.agent_processor import AgentManager, AgentManagerQueue

current_all_step_result: AllStepResult
worker_id: int
brain_name_to_action_info: Dict[AgentGroup, ActionInfo]
environment_stats: Dict[str, Tuple[float, StatsAggregationMethod]]
@property
def name_behavior_ids(self) -> Iterable[AgentGroup]:

def empty(worker_id: int) -> "EnvironmentStep":
return EnvironmentStep({}, worker_id, {})
return EnvironmentStep({}, worker_id, {}, {})
class EnvManager(ABC):

step_info.brain_name_to_action_info.get(
name_behavior_id, ActionInfo.empty()
),
)
self.agent_managers[name_behavior_id].record_environment_stats(
step_info.environment_stats, step_info.worker_id
)
return len(step_infos)

6
ml-agents/mlagents/trainers/simple_env_manager.py


self.env.step()
all_step_result = self._generate_all_results()
step_info = EnvironmentStep(all_step_result, 0, self.previous_all_action_info)
step_info = EnvironmentStep(
all_step_result, 0, self.previous_all_action_info, {}
)
self.previous_step = step_info
return [step_info]

self.shared_float_properties.set_property(k, v)
self.env.reset()
all_step_result = self._generate_all_results()
self.previous_step = EnvironmentStep(all_step_result, 0, {})
self.previous_step = EnvironmentStep(all_step_result, 0, {}, {})
return [self.previous_step]
@property

19
ml-agents/mlagents/trainers/subprocess_env_manager.py


import logging
from typing import Dict, NamedTuple, List, Any, Optional, Callable, Set
from typing import Dict, NamedTuple, List, Any, Optional, Callable, Set, Tuple
import cloudpickle
from mlagents_envs.environment import UnityEnvironment

EngineConfigurationChannel,
EngineConfig,
)
from mlagents_envs.side_channel.stats_side_channel import (
StatsSideChannel,
StatsAggregationMethod,
)
from mlagents_envs.side_channel.side_channel import SideChannel
from mlagents.trainers.brain_conversion_utils import group_spec_to_brain_parameters

class StepResponse(NamedTuple):
all_step_result: AllStepResult
timer_root: Optional[TimerNode]
environment_stats: Dict[str, Tuple[float, StatsAggregationMethod]]
class UnityEnvWorker:

shared_float_properties = FloatPropertiesChannel()
engine_configuration_channel = EngineConfigurationChannel()
engine_configuration_channel.set_configuration(engine_configuration)
stats_channel = StatsSideChannel()
worker_id, [shared_float_properties, engine_configuration_channel]
worker_id,
[shared_float_properties, engine_configuration_channel, stats_channel],
)
def _send_response(cmd_name, payload):

# Note that we could randomly return timers a fraction of the time if we wanted to reduce
# the data transferred.
# TODO get gauges from the workers and merge them in the main process too.
step_response = StepResponse(all_step_result, get_timer_root())
env_stats = stats_channel.get_and_reset_stats()
step_response = StepResponse(
all_step_result, get_timer_root(), env_stats
)
step_queue.put(EnvironmentResponse("step", worker_id, step_response))
reset_timers()
elif cmd.name == "external_brains":

ew.send("reset", config)
# Next (synchronously) collect the reset observations from each worker in sequence
for ew in self.env_workers:
ew.previous_step = EnvironmentStep(ew.recv().payload, ew.worker_id, {})
ew.previous_step = EnvironmentStep(ew.recv().payload, ew.worker_id, {}, {})
return list(map(lambda ew: ew.previous_step, self.env_workers))
@property

payload.all_step_result,
step.worker_id,
env_worker.previous_all_action_info,
payload.environment_stats,
)
step_infos.append(new_step)
env_worker.previous_step = new_step

34
ml-agents/mlagents/trainers/tests/test_agent_processor.py


)
from mlagents.trainers.action_info import ActionInfo
from mlagents.trainers.trajectory import Trajectory
from mlagents.trainers.stats import StatsReporter
from mlagents.trainers.stats import StatsReporter, StatsSummary
from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod
def create_mock_brain():

queue_traj = queue.get_nowait()
assert isinstance(queue_traj, Trajectory)
assert queue.empty()
def test_agent_manager_stats():
policy = mock.Mock()
stats_reporter = StatsReporter("FakeCategory")
writer = mock.Mock()
stats_reporter.add_writer(writer)
manager = AgentManager(policy, "MyBehavior", stats_reporter)
all_env_stats = [
{
"averaged": (1.0, StatsAggregationMethod.AVERAGE),
"most_recent": (2.0, StatsAggregationMethod.MOST_RECENT),
},
{
"averaged": (3.0, StatsAggregationMethod.AVERAGE),
"most_recent": (4.0, StatsAggregationMethod.MOST_RECENT),
},
]
for env_stats in all_env_stats:
manager.record_environment_stats(env_stats, worker_id=0)
expected_stats = {
"averaged": StatsSummary(mean=2.0, std=mock.ANY, num=2),
"most_recent": StatsSummary(mean=4.0, std=0.0, num=1),
}
stats_reporter.write_stats(123)
writer.write_stats.assert_any_call("FakeCategory", expected_stats, 123)
# clean up our Mock from the global list
StatsReporter.writers.remove(writer)

11
ml-agents/mlagents/trainers/tests/test_subprocess_env_manager.py


from mlagents.trainers.env_manager import EnvironmentStep
from mlagents_envs.base_env import BaseEnv
from mlagents_envs.side_channel.engine_configuration_channel import EngineConfig
from mlagents_envs.side_channel.stats_side_channel import StatsAggregationMethod
from mlagents.trainers.tests.simple_test_envs import SimpleEnvironment
from mlagents.trainers.stats import StatsReporter
from mlagents.trainers.tests.test_simple_rl import (

)
manager.step_queue = Mock()
manager.step_queue.get_nowait.side_effect = [
EnvironmentResponse("step", 0, StepResponse(0, None)),
EnvironmentResponse("step", 1, StepResponse(1, None)),
EnvironmentResponse("step", 0, StepResponse(0, None, {})),
EnvironmentResponse("step", 1, StepResponse(1, None, {})),
EmptyQueue(),
]
step_mock = Mock()

env_manager.set_agent_manager(brain_name, agent_manager_mock)
step_info_dict = {brain_name: Mock()}
step_info = EnvironmentStep(step_info_dict, 0, action_info_dict)
env_stats = {
"averaged": (1.0, StatsAggregationMethod.AVERAGE),
"most_recent": (2.0, StatsAggregationMethod.MOST_RECENT),
}
step_info = EnvironmentStep(step_info_dict, 0, action_info_dict, env_stats)
step_mock.return_value = [step_info]
env_manager.advance()

72
com.unity.ml-agents/Runtime/SideChannels/StatsSideChannel.cs


using System;
namespace MLAgents.SideChannels
{
/// <summary>
/// Determines the behavior of how multiple stats within the same summary period are combined.
/// </summary>
public enum StatAggregationMethod
{
/// <summary>
/// Values within the summary period are averaged before reporting.
/// Note that values from the same C# environment in the same step may replace each other.
/// </summary>
Average = 0,
/// <summary>
/// Only the most recent value is reported.
/// To avoid conflicts between multiple environments, the ML Agents environment will only
/// keep stats from worker index 0.
/// </summary>
MostRecent = 1
}
/// <summary>
/// Add stats (key-value pairs) for reporting. The ML Agents environment will send these to a StatsReporter
/// instance, which means the values will appear in the Tensorboard summary, as well as trainer gauges.
/// Note that stats are only written every summary_frequency steps; See <see cref="StatAggregationMethod"/>
/// for options on how multiple values are handled.
/// </summary>
public class StatsSideChannel : SideChannel
{
const string k_StatsSideChannelDefaultId = "a1d8f7b7-cec8-50f9-b78b-d3e165a78520";
/// <summary>
/// Initializes the side channel with the provided channel ID.
/// The constructor is internal because only one instance is
/// supported at a time, and is created by the Academy.
/// </summary>
internal StatsSideChannel()
{
ChannelId = new Guid(k_StatsSideChannelDefaultId);
}
/// <summary>
/// Add a stat value for reporting. This will appear in the Tensorboard summary and trainer gauges.
/// You can nest stats in Tensorboard with "/".
/// Note that stats are only written to Tensorboard each summary_frequency steps; if a stat is
/// received multiple times, only the most recent version is used.
/// To avoid conflicts between multiple environments, only stats from worker index 0 are used.
/// </summary>
/// <param name="key">The stat name.</param>
/// <param name="value">The stat value. You can nest stats in Tensorboard by using "/". </param>
/// <param name="aggregationMethod">How multiple values should be treated.</param>
public void AddStat(
string key, float value, StatAggregationMethod aggregationMethod = StatAggregationMethod.Average
)
{
using (var msg = new OutgoingMessage())
{
msg.WriteString(key);
msg.WriteFloat32(value);
msg.WriteInt32((int)aggregationMethod);
QueueMessageToSend(msg);
}
}
/// <inheritdoc/>
public override void OnMessageReceived(IncomingMessage msg)
{
throw new UnityAgentsException("StatsSideChannel should never receive messages.");
}
}
}

11
com.unity.ml-agents/Runtime/SideChannels/StatsSideChannel.cs.meta


fileFormatVersion: 2
guid: 83a07fdb9e8f04536908a51447dfe548
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

48
ml-agents-envs/mlagents_envs/side_channel/stats_side_channel.py


from mlagents_envs.side_channel import SideChannel, IncomingMessage
import uuid
from typing import Dict, Tuple
from enum import Enum
# Determines the behavior of how multiple stats within the same summary period are combined.
class StatsAggregationMethod(Enum):
# Values within the summary period are averaged before reporting.
AVERAGE = 0
# Only the most recent value is reported.
MOST_RECENT = 1
class StatsSideChannel(SideChannel):
"""
Side channel that receives (string, float) pairs from the environment, so that they can eventually
be passed to a StatsReporter.
"""
def __init__(self) -> None:
# >>> uuid.uuid5(uuid.NAMESPACE_URL, "com.unity.ml-agents/StatsSideChannel")
# UUID('a1d8f7b7-cec8-50f9-b78b-d3e165a78520')
super().__init__(uuid.UUID("a1d8f7b7-cec8-50f9-b78b-d3e165a78520"))
self.stats: Dict[str, Tuple[float, StatsAggregationMethod]] = {}
def on_message_received(self, msg: IncomingMessage) -> None:
"""
Receive the message from the environment, and save it for later retrieval.
:param msg:
:return:
"""
key = msg.read_string()
val = msg.read_float32()
agg_type = StatsAggregationMethod(msg.read_int32())
self.stats[key] = (val, agg_type)
def get_and_reset_stats(self) -> Dict[str, Tuple[float, StatsAggregationMethod]]:
"""
Returns the current stats, and resets the internal storage of the stats.
:return:
"""
s = self.stats
self.stats = {}
return s
正在加载...
取消
保存