|
|
|
|
|
|
with tf.Session() as sess: |
|
|
|
with tf.variable_scope("FakeGraphScope"): |
|
|
|
mock_communicator.return_value = MockCommunicator( |
|
|
|
discrete=False, visual_input=False) |
|
|
|
discrete=False, visual_inputs=0) |
|
|
|
env = UnityEnvironment(' ') |
|
|
|
model = BehavioralCloningModel(env.brains["RealFakeBrain"]) |
|
|
|
init = tf.global_variables_initializer() |
|
|
|
|
|
|
with tf.Session() as sess: |
|
|
|
with tf.variable_scope("FakeGraphScope"): |
|
|
|
mock_communicator.return_value = MockCommunicator( |
|
|
|
discrete=True, visual_input=False) |
|
|
|
discrete=True, visual_inputs=0) |
|
|
|
env = UnityEnvironment(' ') |
|
|
|
model = BehavioralCloningModel(env.brains["RealFakeBrain"]) |
|
|
|
init = tf.global_variables_initializer() |
|
|
|
|
|
|
with tf.Session() as sess: |
|
|
|
with tf.variable_scope("FakeGraphScope"): |
|
|
|
mock_communicator.return_value = MockCommunicator( |
|
|
|
discrete=True, visual_input=True) |
|
|
|
discrete=True, visual_inputs=2) |
|
|
|
env = UnityEnvironment(' ') |
|
|
|
model = BehavioralCloningModel(env.brains["RealFakeBrain"]) |
|
|
|
init = tf.global_variables_initializer() |
|
|
|
|
|
|
model.sequence_length: 1, |
|
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], |
|
|
|
[3, 4, 5, 3, 4, 5]]), |
|
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3])} |
|
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]), |
|
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3])} |
|
|
|
sess.run(run_list, feed_dict=feed_dict) |
|
|
|
env.close() |
|
|
|
|
|
|
|
|
|
|
with tf.Session() as sess: |
|
|
|
with tf.variable_scope("FakeGraphScope"): |
|
|
|
mock_communicator.return_value = MockCommunicator( |
|
|
|
discrete=False, visual_input=True) |
|
|
|
discrete=False, visual_inputs=2) |
|
|
|
env = UnityEnvironment(' ') |
|
|
|
model = BehavioralCloningModel(env.brains["RealFakeBrain"]) |
|
|
|
init = tf.global_variables_initializer() |
|
|
|
|
|
|
model.sequence_length: 1, |
|
|
|
model.vector_in: np.array([[1, 2, 3, 1, 2, 3], |
|
|
|
[3, 4, 5, 3, 4, 5]]), |
|
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3])} |
|
|
|
model.visual_in[0]: np.ones([2, 40, 30, 3]), |
|
|
|
model.visual_in[1]: np.ones([2, 40, 30, 3])} |
|
|
|
sess.run(run_list, feed_dict=feed_dict) |
|
|
|
env.close() |
|
|
|
|
|
|
|