A symmetric game is one in which opposing agents are equal in form, function and objective. Examples of symmetric games
are our Tennis and Soccer example environments. In reinforcement learning, this means both agents have the same observation and
action spaces and learn from the same reward function and so *they can share the same policy*. In asymmetric games,
this is not the case. An example of an asymmetric games are Hide and Seek. Agents in these
types of games do not always have the same observation or action spaces and so sharing policy networks is not
necessarily ideal.
With self-play, an agent learns in adversarial games by competing against fixed, past versions of its opponent
(which could be itself as in symmetric games) to provide a more stable, stationary learning environment. This is compared
to competing against the current, best opponent in every episode, which is constantly changing (because it's learning).
However, from the perspective of an individual agent, these scenarios appear to have non-stationary dynamics because the opponent is often changing.
This can cause significant issues in the experience replay mechanism used by SAC. Thus, we recommend that users use PPO. For further reading on
this issue in particular, see the paper [Stabilising Experience Replay for Deep Multi-Agent Reinforcement Learning](https://arxiv.org/pdf/1702.08887.pdf).
For more general information on training with ML-Agents, see [Training ML-Agents](Training-ML-Agents.md).
For more algorithm specific instruction, please see the documentation for [PPO](Training-PPO.md) or [SAC](Training-SAC.md).
See the trainer configuration and agent prefabs for our Tennis environment for an example.
***Team ID must be 0 or an integer greater than 0.***
In symmetric games, since all agents (even on opposing teams) will share the same policy, they should have the same 'Behavior Name' in their
Behavior Parameters Script. In asymmetric games, they should have a different Behavior Name in their Behavior Parameters script.
Note, in asymmetric games, the agents must have both different Behavior Names *and* different team IDs! Then, specify the trainer configuration
for each Behavior Name in your scene as you would normally, and remember to include the self-play hyperparameter hierarchy!
For examples of how to use this feature, you can see the trainer configurations and agent prefabs for our Tennis and Soccer environments.
Tennis and Soccer provide examples of symmetric games. To train an asymmetric game, specify trainer configurations for each of your behavior names
and include the self-play hyperparameter hierarchy in both.
## Best Practices Training with Self-Play
Training against a set of slowly or unchanging adversaries with low diversity
results in a more stable learning process than training against a set of quickly
changing adversaries with high diversity. With this context, this guide discusses the exposed self-play hyperparameters and intuitions for tuning them.
changing adversaries with high diversity. With this context, this guide discusses
the exposed self-play hyperparameters and intuitions for tuning them.
## Hyperparameters
### Save Steps
The `save_steps` parameter corresponds to the number of *trainer steps* between snapshots. For example, if `save_steps`=10000 then a snapshot of the current policy will be saved every 10000 trainer steps. Note, trainer steps are counted per agent. For more information, please see the [migration doc](Migrating.md) after v0.13.
The `save_steps` parameter corresponds to the number of *trainer steps* between snapshots. For example, if `save_steps=10000` then a snapshot of the current policy will be saved every `10000` trainer steps. Note, trainer steps are counted per agent. For more information, please see the [migration doc](Migrating.md) after v0.13.
### Team Change
The `team_change` parameter corresponds to the number of *trainer_steps* between switching the learning team.
This is the number of trainer steps the teams associated with a specific ghost trainer will train before a different team
becomes the new learning team. It is possible that, in asymmetric games, opposing teams require fewer trainer steps to make similar
performance gains. This enables users to train a more complicated team of agents for more trainer steps than a simpler team of agents
per team switch.
A larger value of `team-change` will allow the agent to train longer against it's opponents. The longer an agent trains against the same set of opponents
the more able it will be to defeat them. However, training against them for too long may result in overfitting to the particular opponent strategies
and so the agent may fail against the next batch of opponents.
The value of `team-change` will determine how many snapshots of the agent's policy are saved to be used as opponents for the other team. So, we
recommend setting this value as a function of the `save_steps` parameter discussed previously.
Recommended Range : 4x-10x where x=`save_steps`
The `swap_steps` parameter corresponds to the number of *trainer steps* between swapping the opponents policy with a different snapshot. As in the `save_steps` discussion, note that trainer steps are counted per agent. For more information, please see the [migration doc](Migrating.md) after v0.13.
The `swap_steps` parameter corresponds to the number of *ghost steps* (not trainer steps) between swapping the opponents policy with a different snapshot.
A 'ghost step' refers to a step taken by an agent *that is following a fixed policy and not learning*. The reason for this distinction is that in asymmetric games,
we may have teams with an unequal number of agents e.g. a 2v1 scenario. The team with two agents collects
twice as many agent steps per environment step as the team with one agent. Thus, these two values will need to be distinct to ensure that the same number
of trainer steps corresponds to the same number of opponent swaps for each team. The formula for `swap_steps` if
a user desires `x` swaps of a team with `num_agents` agents against an opponent team with `num_opponent_agents`
As an example, in a 2v1 scenario, if we want the swap to occur `x=4` times during `team-change=200000` steps,
the `swap_steps` for the team of one agent is:
```
swap_steps = (1 / 2) * (200000 / 4) = 25000
```
The `swap_steps` for the team of two agents is:
```
swap_steps = (2 / 1) * (200000 / 4) = 100000
```
Note, with equal team sizes, the first term is equal to 1 and `swap_steps` can be calculated by just dividing the total steps by the desired number of swaps.
### Play against current self ratio
### Play against latest model ratio
The `play_against_current_self_ratio` parameter corresponds to the probability
an agent will play against its ***current*** self. With probability
1 - `play_against_current_self_ratio`, the agent will play against a snapshot of itself
from a past iteration.
The `play_against_latest_model_ratio` parameter corresponds to the probability
an agent will play against the latest opponent policy. With probability
1 - `play_against_latest_model_ratio`, the agent will play against a snapshot of its
opponent from a past iteration.
A larger value of `play_against_current_self_ratio` indicates that an agent will be playing against itself more often. Since the agent is updating it's policy, the opponent will be different from iteration to iteration. This can lead to an unstable learning environment, but poses the agent with an [auto-curricula](https://openai.com/blog/emergent-tool-use/) of more increasingly challenging situations which may lead to a stronger final policy.
A larger value of `play_against_latest_model_ratio` indicates that an agent will be playing against the current opponent more often. Since the agent is updating it's policy, the opponent will be different from iteration to iteration. This can lead to an unstable learning environment, but poses the agent with an [auto-curricula](https://openai.com/blog/emergent-tool-use/) of more increasingly challenging situations which may lead to a stronger final policy.
Recommended Range : 0.0 - 1.0
Range : 0.0 - 1.0
### Window
In adversarial games, the cumulative environment reward may not be a meaningful metric by which to track learning progress. This is because cumulative reward is entirely dependent on the skill of the opponent. An agent at a particular skill level will get more or less reward against a worse or better agent, respectively.
We provide an implementation of the ELO rating system, a method for calculating the relative skill level between two players from a given population in a zero-sum game. For more information on ELO, please see [the ELO wiki](https://en.wikipedia.org/wiki/Elo_rating_system).
In a proper training run, the ELO of the agent should steadily increase. The absolute value of the ELO is less important than the change in ELO over training iterations.
In a proper training run, the ELO of the agent should steadily increase. The absolute value of the ELO is less important than the change in ELO over training iterations.
Note, this implementation will support any number of teams but ELO is only applicable to games with two teams. It is ongoing work to implement
a reliable metric for measuring progress in scenarios with three or more teams. These scenarios can still train, though as of now, reward and qualitative observations
are the only metric by which we can judge performance.