|
|
|
|
|
|
|
|
|
|
import logging |
|
|
|
from collections import defaultdict |
|
|
|
from typing import Dict |
|
|
|
from mlagents.envs.brain import BrainInfo |
|
|
|
from mlagents.trainers.rl_trainer import RLTrainer, AllRewardsOutput |
|
|
|
from mlagents.trainers.rl_trainer import RLTrainer |
|
|
|
from mlagents.envs.action_info import ActionInfoOutputs |
|
|
|
|
|
|
|
logger = logging.getLogger("mlagents.trainers") |
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
for _reward_signal in self.policy.reward_signals.keys(): |
|
|
|
self.collected_rewards[_reward_signal] = {} |
|
|
|
self.collected_rewards[_reward_signal] = defaultdict(lambda: 0) |
|
|
|
|
|
|
|
def process_trajectory(self, trajectory: Trajectory) -> None: |
|
|
|
""" |
|
|
|
|
|
|
value_next = self.policy.get_value_estimates2(trajectory.next_step) |
|
|
|
|
|
|
|
# Evaluate all reward functions |
|
|
|
self.collected_rewards["environment"][agent_id] += np.sum( |
|
|
|
agent_buffer_trajectory["environment_rewards"] |
|
|
|
) |
|
|
|
evaluate_result = reward_signal.evaluate_batch(agent_buffer_trajectory) |
|
|
|
agent_buffer_trajectory["{}_rewards".format(name)].extend( |
|
|
|
evaluate_result.scaled_reward |
|
|
|
) |
|
|
|
self.collected_rewards[name][agent_id] += np.sum( |
|
|
|
evaluate_result.unscaled_reward |
|
|
|
) |
|
|
|
evaluate_result = reward_signal.evaluate_batch( |
|
|
|
agent_buffer_trajectory |
|
|
|
).scaled_reward |
|
|
|
agent_buffer_trajectory["{}_rewards".format(name)].extend(evaluate_result) |
|
|
|
# Report the reward signals |
|
|
|
self.collected_rewards[name][agent_id] += np.sum(evaluate_result) |
|
|
|
|
|
|
|
# Compute GAE and returns |
|
|
|
tmp_advantages = [] |
|
|
|
|
|
|
rewards.get(agent_id, 0) |
|
|
|
) |
|
|
|
rewards[agent_id] = 0 |
|
|
|
|
|
|
|
def process_experiences( |
|
|
|
self, current_info: BrainInfo, next_info: BrainInfo |
|
|
|
) -> None: |
|
|
|
pass |
|
|
|
# """ |
|
|
|
# Checks agent histories for processing condition, and processes them as necessary. |
|
|
|
# Processing involves calculating value and advantage targets for model updating step. |
|
|
|
# :param current_info: current BrainInfo. |
|
|
|
# :param next_info: next BrainInfo. |
|
|
|
# """ |
|
|
|
# if self.is_training: |
|
|
|
# self.policy.update_normalization(next_info.vector_observations) |
|
|
|
# for l in range(len(next_info.agents)): |
|
|
|
# agent_actions = self.processing_buffer[next_info.agents[l]]["actions"] |
|
|
|
# if ( |
|
|
|
# next_info.local_done[l] |
|
|
|
# or len(agent_actions) > self.trainer_parameters["time_horizon"] |
|
|
|
# ) and len(agent_actions) > 0: |
|
|
|
# agent_id = next_info.agents[l] |
|
|
|
# if next_info.max_reached[l]: |
|
|
|
# bootstrapping_info = self.processing_buffer[ |
|
|
|
# agent_id |
|
|
|
# ].last_brain_info |
|
|
|
# idx = bootstrapping_info.agents.index(agent_id) |
|
|
|
# else: |
|
|
|
# bootstrapping_info = next_info |
|
|
|
# idx = l |
|
|
|
# value_next = self.policy.get_value_estimates( |
|
|
|
# bootstrapping_info, |
|
|
|
# idx, |
|
|
|
# next_info.local_done[l] and not next_info.max_reached[l], |
|
|
|
# ) |
|
|
|
|
|
|
|
# tmp_advantages = [] |
|
|
|
# tmp_returns = [] |
|
|
|
# for name in self.policy.reward_signals: |
|
|
|
# bootstrap_value = value_next[name] |
|
|
|
|
|
|
|
# local_rewards = self.processing_buffer[agent_id][ |
|
|
|
# "{}_rewards".format(name) |
|
|
|
# ].get_batch() |
|
|
|
# local_value_estimates = self.processing_buffer[agent_id][ |
|
|
|
# "{}_value_estimates".format(name) |
|
|
|
# ].get_batch() |
|
|
|
# local_advantage = get_gae( |
|
|
|
# rewards=local_rewards, |
|
|
|
# value_estimates=local_value_estimates, |
|
|
|
# value_next=bootstrap_value, |
|
|
|
# gamma=self.policy.reward_signals[name].gamma, |
|
|
|
# lambd=self.trainer_parameters["lambd"], |
|
|
|
# ) |
|
|
|
# local_return = local_advantage + local_value_estimates |
|
|
|
# # This is later use as target for the different value estimates |
|
|
|
# self.processing_buffer[agent_id]["{}_returns".format(name)].set( |
|
|
|
# local_return |
|
|
|
# ) |
|
|
|
# self.processing_buffer[agent_id]["{}_advantage".format(name)].set( |
|
|
|
# local_advantage |
|
|
|
# ) |
|
|
|
# tmp_advantages.append(local_advantage) |
|
|
|
# tmp_returns.append(local_return) |
|
|
|
|
|
|
|
# global_advantages = list( |
|
|
|
# np.mean(np.array(tmp_advantages, dtype=np.float32), axis=0) |
|
|
|
# ) |
|
|
|
# global_returns = list( |
|
|
|
# np.mean(np.array(tmp_returns, dtype=np.float32), axis=0) |
|
|
|
# ) |
|
|
|
# self.processing_buffer[agent_id]["advantages"].set(global_advantages) |
|
|
|
# self.processing_buffer[agent_id]["discounted_returns"].set( |
|
|
|
# global_returns |
|
|
|
# ) |
|
|
|
|
|
|
|
# self.processing_buffer.append_to_update_buffer( |
|
|
|
# self.update_buffer, |
|
|
|
# agent_id, |
|
|
|
# batch_size=None, |
|
|
|
# training_length=self.policy.sequence_length, |
|
|
|
# ) |
|
|
|
|
|
|
|
# self.processing_buffer[agent_id].reset_agent() |
|
|
|
# if next_info.local_done[l]: |
|
|
|
# self.stats["Environment/Episode Length"].append( |
|
|
|
# self.episode_steps.get(agent_id, 0) |
|
|
|
# ) |
|
|
|
# self.episode_steps[agent_id] = 0 |
|
|
|
# for name, rewards in self.collected_rewards.items(): |
|
|
|
# if name == "environment": |
|
|
|
# self.cumulative_returns_since_policy_update.append( |
|
|
|
# rewards.get(agent_id, 0) |
|
|
|
# ) |
|
|
|
# self.stats["Environment/Cumulative Reward"].append( |
|
|
|
# rewards.get(agent_id, 0) |
|
|
|
# ) |
|
|
|
# self.reward_buffer.appendleft(rewards.get(agent_id, 0)) |
|
|
|
# rewards[agent_id] = 0 |
|
|
|
# else: |
|
|
|
# self.stats[ |
|
|
|
# self.policy.reward_signals[name].stat_name |
|
|
|
# ].append(rewards.get(agent_id, 0)) |
|
|
|
# rewards[agent_id] = 0 |
|
|
|
|
|
|
|
def add_policy_outputs( |
|
|
|
self, take_action_outputs: ActionInfoOutputs, agent_id: str, agent_idx: int |
|
|
|
) -> None: |
|
|
|
""" |
|
|
|
Takes the output of the last action and store it into the training buffer. |
|
|
|
""" |
|
|
|
actions = take_action_outputs["action"] |
|
|
|
if self.policy.use_continuous_act: |
|
|
|
actions_pre = take_action_outputs["pre_action"] |
|
|
|
self.processing_buffer[agent_id]["actions_pre"].append( |
|
|
|
actions_pre[agent_idx] |
|
|
|
) |
|
|
|
epsilons = take_action_outputs["random_normal_epsilon"] |
|
|
|
self.processing_buffer[agent_id]["random_normal_epsilon"].append( |
|
|
|
epsilons[agent_idx] |
|
|
|
) |
|
|
|
a_dist = take_action_outputs["log_probs"] |
|
|
|
# value is a dictionary from name of reward to value estimate of the value head |
|
|
|
self.processing_buffer[agent_id]["actions"].append(actions[agent_idx]) |
|
|
|
self.processing_buffer[agent_id]["action_probs"].append(a_dist[agent_idx]) |
|
|
|
|
|
|
|
def add_rewards_outputs( |
|
|
|
self, |
|
|
|
rewards_out: AllRewardsOutput, |
|
|
|
values: Dict[str, np.ndarray], |
|
|
|
agent_id: str, |
|
|
|
agent_idx: int, |
|
|
|
agent_next_idx: int, |
|
|
|
) -> None: |
|
|
|
""" |
|
|
|
Takes the value output of the last action and store it into the training buffer. |
|
|
|
""" |
|
|
|
for name, reward_result in rewards_out.reward_signals.items(): |
|
|
|
# 0 because we use the scaled reward to train the agent |
|
|
|
self.processing_buffer[agent_id]["{}_rewards".format(name)].append( |
|
|
|
reward_result.scaled_reward[agent_next_idx] |
|
|
|
) |
|
|
|
self.processing_buffer[agent_id]["{}_value_estimates".format(name)].append( |
|
|
|
values[name][agent_idx][0] |
|
|
|
) |
|
|
|
|
|
|
|
def is_ready_update(self): |
|
|
|
""" |
|
|
|