Ruo-Ping Dong
5 年前
当前提交
95858e25
共有 18 个文件被更改,包括 326 次插入 和 172 次删除
-
4ml-agents/mlagents/trainers/ghost/trainer.py
-
4ml-agents/mlagents/trainers/policy/tf_policy.py
-
13ml-agents/mlagents/trainers/ppo/trainer.py
-
14ml-agents/mlagents/trainers/sac/trainer.py
-
28ml-agents/mlagents/trainers/saver/saver.py
-
138ml-agents/mlagents/trainers/saver/tf_saver.py
-
99ml-agents/mlagents/trainers/saver/torch_saver.py
-
10ml-agents/mlagents/trainers/tests/test_bcmodule.py
-
9ml-agents/mlagents/trainers/tests/test_ppo.py
-
1ml-agents/mlagents/trainers/tests/test_reward_signals.py
-
12ml-agents/mlagents/trainers/tests/test_rl_trainer.py
-
4ml-agents/mlagents/trainers/tests/test_sac.py
-
4ml-agents/mlagents/trainers/tests/test_simple_rl.py
-
9ml-agents/mlagents/trainers/tf/model_serialization.py
-
2ml-agents/mlagents/trainers/torch/model_serialization.py
-
32ml-agents/mlagents/trainers/trainer/rl_trainer.py
-
2ml-agents/mlagents/trainers/trainer/trainer.py
-
113ml-agents/mlagents/trainers/tests/test_saver.py
|
|||
import pytest |
|||
from unittest import mock |
|||
import os |
|||
import unittest |
|||
import tempfile |
|||
|
|||
import numpy as np |
|||
from mlagents.tf_utils import tf |
|||
from mlagents.trainers.saver.tf_saver import TFSaver |
|||
from mlagents.trainers import __version__ |
|||
from mlagents.trainers.settings import TrainerSettings |
|||
from mlagents.trainers.policy.tf_policy import TFPolicy |
|||
from mlagents.trainers.tests import mock_brain as mb |
|||
from mlagents.trainers.tests.test_nn_policy import create_policy_mock |
|||
from mlagents.trainers.ppo.optimizer_tf import PPOOptimizer |
|||
|
|||
|
|||
def test_register(tmp_path): |
|||
trainer_params = TrainerSettings() |
|||
saver = TFSaver(trainer_params, tmp_path) |
|||
|
|||
opt = mock.Mock(spec=PPOOptimizer) |
|||
saver.register(opt) |
|||
assert saver.policy is None |
|||
|
|||
trainer_params = TrainerSettings() |
|||
policy = create_policy_mock(trainer_params) |
|||
saver.register(policy) |
|||
assert saver.policy is not None |
|||
|
|||
|
|||
class ModelVersionTest(unittest.TestCase): |
|||
def test_version_compare(self): |
|||
# Test write_stats |
|||
with self.assertLogs("mlagents.trainers", level="WARNING") as cm: |
|||
trainer_params = TrainerSettings() |
|||
mock_path = tempfile.mkdtemp() |
|||
policy = create_policy_mock(trainer_params) |
|||
saver = TFSaver(trainer_params, mock_path) |
|||
saver.register(policy) |
|||
|
|||
saver._check_model_version( |
|||
"0.0.0" |
|||
) # This is not the right version for sure |
|||
# Assert that 1 warning has been thrown with incorrect version |
|||
assert len(cm.output) == 1 |
|||
saver._check_model_version(__version__) # This should be the right version |
|||
# Assert that no additional warnings have been thrown wth correct ver |
|||
assert len(cm.output) == 1 |
|||
|
|||
|
|||
def test_load_save(tmp_path): |
|||
path1 = os.path.join(tmp_path, "runid1") |
|||
path2 = os.path.join(tmp_path, "runid2") |
|||
trainer_params = TrainerSettings() |
|||
policy = create_policy_mock(trainer_params) |
|||
saver = TFSaver(trainer_params, path1) |
|||
saver.register(policy) |
|||
saver.initialize_or_load(policy) |
|||
policy.set_step(2000) |
|||
|
|||
mock_brain_name = "MockBrain" |
|||
saver.save_checkpoint(mock_brain_name, 2000) |
|||
assert len(os.listdir(tmp_path)) > 0 |
|||
|
|||
# Try load from this path |
|||
saver = TFSaver(trainer_params, path1, load=True) |
|||
policy2 = create_policy_mock(trainer_params) |
|||
saver.register(policy2) |
|||
saver.initialize_or_load(policy2) |
|||
_compare_two_policies(policy, policy2) |
|||
assert policy2.get_current_step() == 2000 |
|||
|
|||
# Try initialize from path 1 |
|||
trainer_params.init_path = path1 |
|||
saver = TFSaver(trainer_params, path2) |
|||
policy3 = create_policy_mock(trainer_params) |
|||
saver.register(policy3) |
|||
saver.initialize_or_load(policy3) |
|||
|
|||
_compare_two_policies(policy2, policy3) |
|||
# Assert that the steps are 0. |
|||
assert policy3.get_current_step() == 0 |
|||
|
|||
|
|||
def _compare_two_policies(policy1: TFPolicy, policy2: TFPolicy) -> None: |
|||
""" |
|||
Make sure two policies have the same output for the same input. |
|||
""" |
|||
decision_step, _ = mb.create_steps_from_behavior_spec( |
|||
policy1.behavior_spec, num_agents=1 |
|||
) |
|||
run_out1 = policy1.evaluate(decision_step, list(decision_step.agent_id)) |
|||
run_out2 = policy2.evaluate(decision_step, list(decision_step.agent_id)) |
|||
|
|||
np.testing.assert_array_equal(run_out2["log_probs"], run_out1["log_probs"]) |
|||
|
|||
|
|||
@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"]) |
|||
@pytest.mark.parametrize("visual", [True, False], ids=["visual", "vector"]) |
|||
@pytest.mark.parametrize("rnn", [True, False], ids=["rnn", "no_rnn"]) |
|||
def test_checkpoint_conversion(tmpdir, rnn, visual, discrete): |
|||
tf.reset_default_graph() |
|||
dummy_config = TrainerSettings() |
|||
model_path = os.path.join(tmpdir, "Mock_Brain") |
|||
policy = create_policy_mock( |
|||
dummy_config, use_rnn=rnn, use_discrete=discrete, use_visual=visual |
|||
) |
|||
trainer_params = TrainerSettings() |
|||
saver = TFSaver(trainer_params, model_path) |
|||
saver.register(policy) |
|||
saver.save_checkpoint("Mock_Brain", 100) |
|||
assert os.path.isfile(model_path + "/Mock_Brain-100.nn") |
撰写
预览
正在加载...
取消
保存
Reference in new issue