浏览代码

Use separate hypernetwork module

/gc-hyper
Arthur Juliani 4 年前
当前提交
95441b75
共有 2 个文件被更改,包括 49 次插入50 次删除
  1. 97
      ml-agents/mlagents/trainers/torch/decoders.py
  2. 2
      ml-agents/mlagents/trainers/torch/networks.py

97
ml-agents/mlagents/trainers/torch/decoders.py


return value_outputs
class ValueHeadsHyperNetwork(nn.Module):
def __init__(
self,
num_layers,
layer_size,
num_goals,
stream_names: List[str],
input_size: int,
output_size: int = 1,
):
class HyperNetwork(nn.Module):
def __init__(self, input_size, output_size, hyper_input_size, num_layers, layer_size):
self.stream_names = stream_names
self._num_goals = num_goals
self.streams_size = len(stream_names)
layers = []
layers.append(
linear_layer(
num_goals,
layer_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.0,
bias_init=Initialization.Zero,
)
)
layers.append(Swish())
layers = [linear_layer(
hyper_input_size,
layer_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=1.0,
bias_init=Initialization.Zero,
), Swish()]
for _ in range(num_layers - 1):
layers.append(
linear_layer(

layers.append(Swish())
flat_output = linear_layer(
layer_size,
input_size * output_size * self.streams_size
+ self.output_size * self.streams_size,
input_size * output_size + output_size,
kernel_init=Initialization.KaimingHeNormal,
kernel_gain=0.1,
bias_init=Initialization.Zero,

def forward(
self, hidden: torch.Tensor, goal: torch.Tensor
) -> Dict[str, torch.Tensor]:
goal_onehot = torch.nn.functional.one_hot(
goal[0].long(), self._num_goals
).float()
# (b, i * o * streams + o * streams)
flat_output_weights = self.hypernet(goal_onehot)
b = hidden.size(0)
def forward(self, input_activation, hyper_input):
flat_output_weights = self.hypernet(hyper_input)
batch_size = input_activation.size(0)
self.streams_size * self.input_size * self.output_size,
self.input_size * self.output_size,
output_weights = torch.reshape(
output_weights, (self.streams_size, b, self.input_size, self.output_size)
)
output_bias = torch.reshape(
output_bias, (self.streams_size, b, self.output_size)
)
output_bias = output_bias.unsqueeze(dim=2)
output_weights = output_weights.view(batch_size, self.input_size, self.output_size)
output_bias = output_bias.view(batch_size, self.output_size)
print(output_weights.shape, output_bias.shape, input_activation.shape)
output = torch.bmm(input_activation.unsqueeze(1), output_weights).squeeze(1) + output_bias
print(output.shape)
return output
class ValueHeadsHyperNetwork(nn.Module):
def __init__(
self,
num_layers,
layer_size,
goal_size,
stream_names: List[str],
input_size: int,
output_size: int = 1,
):
super().__init__()
self.stream_names = stream_names
self._num_goals = goal_size
self.input_size = input_size
self.output_size = output_size
self.streams_size = len(stream_names)
self.hypernetwork = HyperNetwork(input_size, self.output_size * self.streams_size, goal_size, num_layers, layer_size)
def forward(
self, hidden: torch.Tensor, goal: torch.Tensor
) -> Dict[str, torch.Tensor]:
output = self.hypernetwork(hidden, goal)
for stream_name, out_w, out_b in zip(
self.stream_names, output_weights, output_bias
):
inp_out_w = torch.bmm(hidden.unsqueeze(dim=1), out_w)
inp_out_w_out_b = inp_out_w + out_b
value_outputs[stream_name] = inp_out_w_out_b.squeeze()
output_list = torch.split(output, self.output_size, dim=1)
for stream_name, output_activation in zip(self.stream_names, output_list):
value_outputs[stream_name] = output_activation
return value_outputs

2
ml-agents/mlagents/trainers/torch/networks.py


self.value_heads = ValueHeadsHyperNetwork(
num_layers=1,
layer_size=256,
num_goals=2,
goal_size=2,
stream_names=stream_names,
input_size=encoding_size,
output_size=outputs_per_stream,

正在加载...
取消
保存