浏览代码

cleanup and update docs

/hh-develop-ragdoll-testing
HH 5 年前
当前提交
82b5af24
共有 2 个文件被更改,包括 10 次插入9 次删除
  1. 11
      Project/Assets/ML-Agents/Examples/Crawler/Scripts/CrawlerAgent.cs
  2. 8
      docs/Learning-Environment-Examples.md

11
Project/Assets/ML-Agents/Examples/Crawler/Scripts/CrawlerAgent.cs


public float maximumWalkingSpeed = 999; //The max walk velocity magnitude an agent will be rewarded for
Vector3 m_WalkDir; //Direction to the target
Quaternion m_WalkDirLookRot; //Will hold the rotation to our target
public float targetSpawnRadius; //The radius in which a target can be randomly spawned.
public bool detectTargets; //Should this agent detect targets
public bool respawnTargetWhenTouched; //Should the target respawn to a different position when touched

[Header("Reward Functions To Use")] [Space(10)]
public bool rewardMovingTowardsTarget; // Agent should move towards target
public bool rewardFacingTarget; // Agent should face the target
public bool rewardUseTimePenalty; // Hurry up

/// </summary>
public void CollectObservationBodyPart(BodyPart bp, VectorSensor sensor)
{
var rb = bp.rb;
sensor.AddObservation(bp.groundContact.touchingGround ? 1 : 0); // Whether the bp touching the ground
//Get velocities in the context of our orientation cube's space

//Get position relative to hips in the context of our orientation cube's space
// sensor.AddObservation(m_OrientationCube.transform.InverseTransformPoint(bp.rb.position));
sensor.AddObservation(orientationCube.transform.InverseTransformDirection(bp.rb.position - body.position));
if (bp.rb.transform != body)

/// </summary>
void RewardFunctionMovingTowards()
{
var movingTowardsDot =
Vector3.Dot(orientationCube.transform.forward, m_JdController.bodyPartsDict[body].rb.velocity);
var movingTowardsDot = Vector3.Dot(orientationCube.transform.forward,
Vector3.ClampMagnitude(m_JdController.bodyPartsDict[body].rb.velocity, maximumWalkingSpeed));
;
AddReward(0.03f * movingTowardsDot);
}

8
docs/Learning-Environment-Examples.md


- Goal: The agents must move its body toward the goal direction without falling.
- `CrawlerStaticTarget` - Goal direction is always forward.
- `CrawlerDynamicTarget`- Goal direction is randomized.
- Agents: The environment contains 3 agent with same Behavior Parameters.
- Agents: The environment contains 10 agents with same Behavior Parameters.
- Vector Observation space: 117 variables corresponding to position, rotation,
- Vector Observation space: 138 variables corresponding to position, rotation,
velocity, and angular velocities of each limb plus the acceleration and
angular acceleration of the body.
- Vector Action space: (Continuous) Size of 20, corresponding to target

- Benchmark Mean Reward for `CrawlerStaticTarget`: 2000
- Benchmark Mean Reward for `CrawlerDynamicTarget`: 400
- Benchmark Mean Reward for `CrawlerStaticTarget`: 1600
- Benchmark Mean Reward for `CrawlerDynamicTarget`: 800
## Worm

正在加载...
取消
保存