浏览代码

Add test for deletion calls

/develop/fixmemoryleak
Ervin Teng 5 年前
当前提交
7b0f700b
共有 2 个文件被更改,包括 66 次插入1 次删除
  1. 3
      ml-agents/mlagents/trainers/tests/mock_brain.py
  2. 64
      ml-agents/mlagents/trainers/tests/test_agent_processor.py

3
ml-agents/mlagents/trainers/tests/mock_brain.py


num_vis_observations: int = 0,
action_shape: List[int] = None,
discrete: bool = False,
done: bool = False,
) -> BatchedStepResult:
"""
Creates a mock BatchedStepResult with observations. Imitates constant

]
reward = np.array(num_agents * [1.0], dtype=np.float32)
done = np.array(num_agents * [False], dtype=np.bool)
done = np.array(num_agents * [done], dtype=np.bool)
max_step = np.array(num_agents * [False], dtype=np.bool)
agent_id = np.arange(num_agents, dtype=np.int32)

64
ml-agents/mlagents/trainers/tests/test_agent_processor.py


from mlagents.trainers.action_info import ActionInfo
from mlagents.trainers.trajectory import Trajectory
from mlagents.trainers.stats import StatsReporter
from mlagents.trainers.brain_conversion_utils import get_global_agent_id
def create_mock_brain():

processor.add_experiences(mock_step, 0, ActionInfo([], [], {}, []))
# Assert that the AgentProcessor is still empty
assert len(processor.experience_buffers[0]) == 0
def test_agent_deletion():
policy = create_mock_policy()
tqueue = mock.Mock()
name_behavior_id = "test_brain_name"
processor = AgentProcessor(
policy,
name_behavior_id,
max_trajectory_length=5,
stats_reporter=StatsReporter("testcat"),
)
fake_action_outputs = {
"action": [0.1],
"entropy": np.array([1.0], dtype=np.float32),
"learning_rate": 1.0,
"pre_action": [0.1],
"log_probs": [0.1],
}
mock_step = mb.create_mock_batchedstep(
num_agents=1,
num_vector_observations=8,
action_shape=[2],
num_vis_observations=0,
)
mock_done_step = mb.create_mock_batchedstep(
num_agents=1,
num_vector_observations=8,
action_shape=[2],
num_vis_observations=0,
done=True,
)
fake_action_info = ActionInfo(
action=[0.1],
value=[0.1],
outputs=fake_action_outputs,
agent_ids=mock_step.agent_id,
)
processor.publish_trajectory_queue(tqueue)
# This is like the initial state after the env reset
processor.add_experiences(mock_step, 0, ActionInfo.empty())
# Run 3 trajectories, with different workers (to simulate different agents)
add_calls = []
add_calls.append(mock.call([get_global_agent_id(0, 0)], [0.1]))
remove_calls = []
for _ep in range(3):
for _ in range(5):
processor.add_experiences(mock_step, _ep, fake_action_info)
add_calls.append(mock.call([get_global_agent_id(_ep, 0)], [0.1]))
processor.add_experiences(mock_done_step, _ep, fake_action_info)
# Make sure we don't add experiences from the prior agents after the done
remove_calls.append(mock.call([get_global_agent_id(_ep, 0)]))
policy.save_previous_action.assert_has_calls(add_calls)
policy.remove_previous_action.assert_has_calls(remove_calls)
# Check that there are no experiences left
assert len(processor.experience_buffers.keys()) == 0
assert len(processor.last_take_action_outputs.keys()) == 0
assert len(processor.episode_steps.keys()) == 0
assert len(processor.episode_rewards.keys()) == 0
def test_agent_manager():

正在加载...
取消
保存