浏览代码

init

/hh-32-observation-crawler
HH 5 年前
当前提交
691c06e8
共有 8 个文件被更改,包括 168 次插入93 次删除
  1. 24
      Project/Assets/ML-Agents/Examples/Crawler/Prefabs/DynamicPlatform.prefab
  2. 23
      Project/Assets/ML-Agents/Examples/Crawler/Scenes/CrawlerDynamicTarget.unity
  3. 203
      Project/Assets/ML-Agents/Examples/Crawler/Scripts/CrawlerAgent.cs
  4. 2
      Project/Assets/ML-Agents/Examples/Walker/Demos/ExpertWalkerDy.demo.meta
  5. 2
      Project/Assets/ML-Agents/Examples/Walker/Demos/ExpertWalkerDyVS.demo.meta
  6. 2
      Project/Assets/ML-Agents/Examples/Walker/Demos/ExpertWalkerStVS.demo.meta
  7. 2
      Project/Assets/ML-Agents/Examples/Walker/Demos/ExpertWalkerSta.demo.meta
  8. 3
      Project/Packages/manifest.json

24
Project/Assets/ML-Agents/Examples/Crawler/Prefabs/DynamicPlatform.prefab


propertyPath: targetToLookAt
value:
objectReference: {fileID: 7802320107249901494}
- target: {fileID: 2864902974773876700, guid: 0456c89e8c9c243d595b039fe7aa0bf9,
type: 3}
propertyPath: updatedByAgent
value: 1
objectReference: {fileID: 0}
- target: {fileID: 4845971000000621469, guid: 0456c89e8c9c243d595b039fe7aa0bf9,
type: 3}
propertyPath: m_ConnectedAnchor.x

propertyPath: m_BehaviorName
value: CrawlerDynamic
objectReference: {fileID: 0}
- target: {fileID: 4845971001715176648, guid: 0456c89e8c9c243d595b039fe7aa0bf9,
type: 3}
propertyPath: m_BrainParameters.VectorObservationSize
value: 32
objectReference: {fileID: 0}
objectReference: {fileID: 7738248088303878723}
objectReference: {fileID: 7802320107249901494}
- target: {fileID: 4845971001715176649, guid: 0456c89e8c9c243d595b039fe7aa0bf9,
type: 3}
propertyPath: ground

type: 3}
m_PrefabInstance: {fileID: 6413179990576818696}
m_PrefabAsset: {fileID: 0}
--- !u!114 &7738248088303878723 stripped
MonoBehaviour:
m_CorrespondingSourceObject: {fileID: 3631016866778687563, guid: 46734abd0de454192b407379c6a4ab8d,
type: 3}
m_PrefabInstance: {fileID: 6413179990576818696}
m_PrefabAsset: {fileID: 0}
m_GameObject: {fileID: 0}
m_Enabled: 1
m_EditorHideFlags: 0
m_Script: {fileID: 11500000, guid: 3c8f113a8b8d94967b1b1782c549be81, type: 3}
m_Name:
m_EditorClassIdentifier:

23
Project/Assets/ML-Agents/Examples/Crawler/Scenes/CrawlerDynamicTarget.unity


- target: {fileID: 6813981368972186340, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}
propertyPath: m_IsActive
value: 1
value: 0
objectReference: {fileID: 0}
- target: {fileID: 6815147845698256993, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}

- target: {fileID: 6813981368972186340, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}
propertyPath: m_IsActive
value: 1
value: 0
objectReference: {fileID: 0}
- target: {fileID: 6815147845698256993, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}

- target: {fileID: 6813981368972186340, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}
propertyPath: m_IsActive
value: 1
value: 0
objectReference: {fileID: 0}
- target: {fileID: 6815147845698256993, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}

- target: {fileID: 6813981368972186340, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}
propertyPath: m_IsActive
value: 1
value: 0
objectReference: {fileID: 0}
- target: {fileID: 6815147845698256993, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}

- target: {fileID: 6813981368972186340, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}
propertyPath: m_IsActive
value: 1
value: 0
objectReference: {fileID: 0}
- target: {fileID: 6815147845698256993, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}

- target: {fileID: 6813981368972186340, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}
propertyPath: m_IsActive
value: 1
value: 0
objectReference: {fileID: 0}
- target: {fileID: 6815147845698256993, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}

- target: {fileID: 6813981368972186340, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}
propertyPath: m_IsActive
value: 1
value: 0
objectReference: {fileID: 0}
- target: {fileID: 6815147845698256993, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}

- target: {fileID: 6813981368972186340, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}
propertyPath: m_IsActive
value: 1
value: 0
objectReference: {fileID: 0}
- target: {fileID: 6815147845698256993, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}

- target: {fileID: 6813981368972186340, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}
propertyPath: m_IsActive
value: 1
value: 0
objectReference: {fileID: 0}
- target: {fileID: 6815147845698256993, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}

m_Modification:
m_TransformParent: {fileID: 0}
m_Modifications:
- target: {fileID: 2375859054548711005, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}
propertyPath: m_IsActive
value: 1
objectReference: {fileID: 0}
- target: {fileID: 6810587057221831324, guid: 0058b366f9d6d44a3ba35beb06b0174b,
type: 3}
propertyPath: m_LocalPosition.x

203
Project/Assets/ML-Agents/Examples/Crawler/Scripts/CrawlerAgent.cs


[RequireComponent(typeof(JointDriveController))] // Required to set joint forces
public class CrawlerAgent : Agent
{
public float maximumWalkingSpeed = 999; //The max walk velocity magnitude an agent will be rewarded for
Vector3 m_WalkDir; //Direction to the target
Quaternion m_WalkDirLookRot; //Will hold the rotation to our target
[Header("Walk Speed")]
[Range(0.1f, 10)]
[SerializeField]
//The walking speed to try and achieve
private float m_TargetWalkingSpeed = 10;
[Header("Target To Walk Towards")] [Space(10)]
public TargetController target; //Target the agent will walk towards.
public float TargetWalkingSpeed // property
{
get { return m_TargetWalkingSpeed; }
set { m_TargetWalkingSpeed = Mathf.Clamp(value, .1f, m_maxWalkingSpeed); }
}
const float m_maxWalkingSpeed = 10; //The max walking speed
//Should the agent sample a new goal velocity each episode?
//If true, walkSpeed will be randomly set between zero and m_maxWalkingSpeed in OnEpisodeBegin()
//If false, the goal velocity will be walkingSpeed
public bool randomizeWalkSpeedEachEpisode;
//The direction an agent will walk during training.
private Vector3 m_WorldDirToWalk = Vector3.right;
[Header("Target To Walk Towards")] public Transform target; //Target the agent will walk towards during training.
[Header("Body Parts")] [Space(10)] public Transform body;
public Transform leg0Upper;

public Transform leg3Lower;
[Header("Orientation")] [Space(10)]
public OrientationCubeController orientationCube;
public OrientationCubeController m_OrientationCube;
//The indicator graphic gameobject that points towards the target
public DirectionIndicator m_DirectionIndicator;
[Header("Reward Functions To Use")] [Space(10)]
public bool rewardMovingTowardsTarget; // Agent should move towards target
public bool rewardFacingTarget; // Agent should face the target
public bool rewardUseTimePenalty; // Hurry up
[Header("Foot Grounded Visualization")] [Space(10)]
public bool useFootGroundedVisualization;

public override void Initialize()
{
orientationCube.UpdateOrientation(body, target.transform);
m_OrientationCube = GetComponentInChildren<OrientationCubeController>();
m_DirectionIndicator = GetComponentInChildren<DirectionIndicator>();
m_JdController = GetComponent<JointDriveController>();
//Setup each body part

}
//Random start rotation to help generalize
transform.rotation = Quaternion.Euler(0, Random.Range(0.0f, 360.0f), 0);
body.rotation = Quaternion.Euler(0, Random.Range(0.0f, 360.0f), 0);
orientationCube.UpdateOrientation(body, target.transform);
UpdateOrientationObjects();
//Set our goal walking speed
TargetWalkingSpeed =
randomizeWalkSpeedEachEpisode ? Random.Range(0.1f, m_maxWalkingSpeed) : TargetWalkingSpeed;
}
/// <summary>

/// </summary>
public override void CollectObservations(VectorSensor sensor)
{
var cubeForward = m_OrientationCube.transform.forward;
//velocity we want to match
var velGoal = cubeForward * TargetWalkingSpeed;
//ragdoll's avg vel
var avgVel = GetAvgVelocity();
//current ragdoll velocity. normalized
sensor.AddObservation(Vector3.Distance(velGoal, avgVel));
//avg body vel relative to cube
sensor.AddObservation(m_OrientationCube.transform.InverseTransformDirection(avgVel));
//vel goal relative to cube
sensor.AddObservation(m_OrientationCube.transform.InverseTransformDirection(velGoal));
//rotation delta
sensor.AddObservation(Quaternion.FromToRotation(body.forward, cubeForward));
sensor.AddObservation(orientationCube.transform.InverseTransformPoint(target.transform.position));
sensor.AddObservation(m_OrientationCube.transform.InverseTransformPoint(target.transform.position));
RaycastHit hit;
float maxRaycastDist = 10;

CollectObservationBodyPart(bodyPart, sensor);
}
}
/// <summary>
/// Agent touched the target
/// </summary>
public void TouchedTarget()
{
AddReward(1f);
}
// /// <summary>
// /// Loop over body parts to add them to observation.
// /// </summary>
// public override void CollectObservations(VectorSensor sensor)
// {
// //Add pos of target relative to orientation cube
// sensor.AddObservation(m_OrientationCube.transform.InverseTransformPoint(target.transform.position));
//
// RaycastHit hit;
// float maxRaycastDist = 10;
// if (Physics.Raycast(body.position, Vector3.down, out hit, maxRaycastDist))
// {
// sensor.AddObservation(hit.distance / maxRaycastDist);
// }
// else
// sensor.AddObservation(1);
//
// foreach (var bodyPart in m_JdController.bodyPartsList)
// {
// CollectObservationBodyPart(bodyPart, sensor);
// }
// }
public override void OnActionReceived(float[] vectorAction)
{
// The dictionary with all the body parts in it are in the jdController

void FixedUpdate()
{
orientationCube.UpdateOrientation(body, target.transform);
UpdateOrientationObjects();
// If enabled the feet will light up green when the foot is grounded.
// This is just a visualization and isn't necessary for function

? groundedMaterial
: unGroundedMaterial;
}
var cubeForward = m_OrientationCube.transform.forward;
if (rewardMovingTowardsTarget)
// a. Match target speed
//This reward will approach 1 if it matches perfectly and approach zero as it deviates
var matchSpeedReward = GetMatchingVelocityReward(cubeForward * TargetWalkingSpeed, GetAvgVelocity());
//Check for NaNs
if (float.IsNaN(matchSpeedReward))
RewardFunctionMovingTowards();
throw new ArgumentException(
"NaN in moveTowardsTargetReward.\n" +
$" cubeForward: {cubeForward}\n" +
$" hips.velocity: {m_JdController.bodyPartsDict[body].rb.velocity}\n" +
$" maximumWalkingSpeed: {m_maxWalkingSpeed}"
);
if (rewardFacingTarget)
// b. Rotation alignment with target direction.
//This reward will approach 1 if it faces the target direction perfectly and approach zero as it deviates
var lookAtTargetReward = (Vector3.Dot(cubeForward, body.forward) + 1) * .5F;
//Check for NaNs
if (float.IsNaN(lookAtTargetReward))
RewardFunctionFacingTarget();
throw new ArgumentException(
"NaN in lookAtTargetReward.\n" +
$" cubeForward: {cubeForward}\n" +
$" body.forward: {body.forward}"
);
if (rewardUseTimePenalty)
AddReward(matchSpeedReward * lookAtTargetReward);
}
//Update OrientationCube and DirectionIndicator
void UpdateOrientationObjects()
{
m_WorldDirToWalk = target.position - body.position;
m_OrientationCube.UpdateOrientation(body, target);
if (m_DirectionIndicator)
RewardFunctionTimePenalty();
m_DirectionIndicator.MatchOrientation(m_OrientationCube.transform);
/// <summary>
/// Reward moving towards target & Penalize moving away from target.
/// </summary>
void RewardFunctionMovingTowards()
//Returns the average velocity of all of the body parts
//Using the velocity of the hips only has shown to result in more erratic movement from the limbs, so...
//...using the average helps prevent this erratic movement
Vector3 GetAvgVelocity()
var movingTowardsDot = Vector3.Dot(orientationCube.transform.forward,
Vector3.ClampMagnitude(m_JdController.bodyPartsDict[body].rb.velocity, maximumWalkingSpeed));
if (float.IsNaN(movingTowardsDot))
Vector3 velSum = Vector3.zero;
Vector3 avgVel = Vector3.zero;
//ALL RBS
int numOfRB = 0;
foreach (var item in m_JdController.bodyPartsList)
throw new ArgumentException(
"NaN in movingTowardsDot.\n" +
$" orientationCube.transform.forward: {orientationCube.transform.forward}\n"+
$" body.velocity: {m_JdController.bodyPartsDict[body].rb.velocity}\n"+
$" maximumWalkingSpeed: {maximumWalkingSpeed}"
);
numOfRB++;
velSum += item.rb.velocity;
AddReward(0.03f * movingTowardsDot);
avgVel = velSum / numOfRB;
return avgVel;
/// <summary>
/// Reward facing target & Penalize facing away from target
/// </summary>
void RewardFunctionFacingTarget()
//normalized value of the difference in avg speed vs goal walking speed.
public float GetMatchingVelocityReward(Vector3 velocityGoal, Vector3 actualVelocity)
var facingReward = Vector3.Dot(orientationCube.transform.forward, body.forward);
if (float.IsNaN(facingReward))
{
throw new ArgumentException(
"NaN in movingTowardsDot.\n" +
$" orientationCube.transform.forward: {orientationCube.transform.forward}\n"+
$" body.forward: {body.forward}"
);
}
AddReward(0.01f * facingReward);
//distance between our actual velocity and goal velocity
var velDeltaMagnitude = Mathf.Clamp(Vector3.Distance(actualVelocity, velocityGoal), 0, TargetWalkingSpeed);
//return the value on a declining sigmoid shaped curve that decays from 1 to 0
//This reward will approach 1 if it matches perfectly and approach zero as it deviates
return Mathf.Pow(1 - Mathf.Pow(velDeltaMagnitude / TargetWalkingSpeed, 2), 2);
/// Existential penalty for time-contrained tasks.
/// Agent touched the target
void RewardFunctionTimePenalty()
public void TouchedTarget()
AddReward(-0.001f);
AddReward(1f);
}
}

2
Project/Assets/ML-Agents/Examples/Walker/Demos/ExpertWalkerDy.demo.meta


guid: 9f87b3070a0fd4a1e838131a91399c2f
ScriptedImporter:
fileIDToRecycleName:
11400000: Assets/Demonstrations/ExpertWalkerDy.demo
11400002: Assets/ML-Agents/Examples/Walker/Demos/ExpertWalkerDy.demo
externalObjects: {}
userData: ' (Unity.MLAgents.Demonstrations.DemonstrationSummary)'
assetBundleName:

2
Project/Assets/ML-Agents/Examples/Walker/Demos/ExpertWalkerDyVS.demo.meta


guid: a4b02e2c382c247919eb63ce72e90a3b
ScriptedImporter:
fileIDToRecycleName:
11400000: Assets/Demonstrations/ExpertWalkerDyVS.demo
11400002: Assets/ML-Agents/Examples/Walker/Demos/ExpertWalkerDyVS.demo
externalObjects: {}
userData: ' (Unity.MLAgents.Demonstrations.DemonstrationSummary)'
assetBundleName:

2
Project/Assets/ML-Agents/Examples/Walker/Demos/ExpertWalkerStVS.demo.meta


guid: edcbb505552464c5c829886a4a3817dd
ScriptedImporter:
fileIDToRecycleName:
11400000: Assets/Demonstrations/ExpertWalkerStVS.demo
11400002: Assets/ML-Agents/Examples/Walker/Demos/ExpertWalkerStVS.demo
externalObjects: {}
userData: ' (Unity.MLAgents.Demonstrations.DemonstrationSummary)'
assetBundleName:

2
Project/Assets/ML-Agents/Examples/Walker/Demos/ExpertWalkerSta.demo.meta


guid: 1f3a5d62e6aea4b5eb053ac33f11b06d
ScriptedImporter:
fileIDToRecycleName:
11400000: Assets/Demonstrations/ExpertWalkerSta.demo
11400002: Assets/ML-Agents/Examples/Walker/Demos/ExpertWalkerSta.demo
externalObjects: {}
userData: ' (Unity.MLAgents.Demonstrations.DemonstrationSummary)'
assetBundleName:

3
Project/Packages/manifest.json


"com.unity.ads": "2.0.8",
"com.unity.analytics": "3.2.3",
"com.unity.collab-proxy": "1.2.15",
"com.unity.ml-agents": "file:../../com.unity.ml-agents",
"com.unity.ml-agents.extensions": "file:../../com.unity.ml-agents.extensions",
"com.unity.ml-agents": "file:/Users/brandonh/unity_projects/ml-agents-master/ml-agents/com.unity.ml-agents",
"com.unity.package-manager-ui": "2.0.8",
"com.unity.purchasing": "2.0.3",
"com.unity.textmeshpro": "1.4.1",

正在加载...
取消
保存