浏览代码

clean ups (#5003)

/develop/action-slice
GitHub 4 年前
当前提交
67e945f0
共有 2 个文件被更改,包括 10 次插入85 次删除
  1. 93
      ml-agents/mlagents/trainers/coma/trainer.py
  2. 2
      ml-agents/mlagents/trainers/trainer/trainer_factory.py

93
ml-agents/mlagents/trainers/coma/trainer.py


# Contains an implementation of PPO as described in: https://arxiv.org/abs/1707.06347
from collections import defaultdict
from typing import cast
from typing import cast, Dict
import numpy as np

)
self.seed = seed
self.policy: Policy = None # type: ignore
self.collected_group_rewards = defaultdict(lambda: 0)
self.collected_group_rewards: Dict[str, int] = defaultdict(lambda: 0)
def _process_trajectory(self, trajectory: Trajectory) -> None:
"""

# Report the reward signals
self.collected_rewards[name][agent_id] += np.sum(evaluate_result)
# Compute GAE and returns
# Compute lambda returns and advantage
tmp_returns = []
for name in self.optimizer.reward_signals:
local_rewards = np.array(

RewardSignalUtil.value_estimates_key(name)
].get_batch()
returns_v, returns_b = get_team_returns(
rewards=local_rewards,
baseline_estimates=baseline_estimates,
v_estimates=v_estimates,
value_next=value_next[name],
lambd_returns = lambda_return(
r=local_rewards,
value_estimates=v_estimates,
)
test_v, _ = get_team_returns(
rewards=local_rewards,
baseline_estimates=baseline_estimates,
v_estimates=v_estimates,
gamma=self.optimizer.reward_signals[name].gamma,
lambd=1,
self._stats_reporter.add_stat(
f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Sum Rewards",
np.mean(test_v),
)
local_advantage = np.array(lambd_returns) - np.array(baseline_estimates)
self._stats_reporter.add_stat(
f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} TD Lam",
np.mean(returns_v),
agent_buffer_trajectory[RewardSignalUtil.returns_key(name)].set(
lambd_returns
local_advantage = np.array(returns_v) - np.array(baseline_estimates)
self._stats_reporter.add_stat(
f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} TD Advantage Estimate",
np.mean(local_advantage),
)
local_return = local_advantage + baseline_estimates
# local_return = local_advantage + q_estimates
# This is later use as target for the different value estimates
# agent_buffer_trajectory[f"{name}_returns"].set(local_return)
agent_buffer_trajectory[RewardSignalUtil.returns_key(name)].set(returns_v)
tmp_returns.append(local_return)
global_returns = list(np.mean(np.array(tmp_returns, dtype=np.float32), axis=0))
agent_buffer_trajectory[BufferKey.DISCOUNTED_RETURNS].set(global_returns)
# Append to update buffer
agent_buffer_trajectory.resequence_and_append(
self.update_buffer, training_length=self.policy.sequence_length

self.collected_group_rewards.pop(agent_id)
def discount_rewards(r, gamma=0.99, value_next=0.0):
"""
Computes discounted sum of future rewards for use in updating value estimate.
:param r: List of rewards.
:param gamma: Discount factor.
:param value_next: T+1 value estimate for returns calculation.
:return: discounted sum of future rewards as list.
"""
discounted_r = np.zeros_like(r)
running_add = value_next
for t in reversed(range(0, r.size)):
running_add = running_add * gamma + r[t]
discounted_r[t] = running_add
return discounted_r
def lambda_return(r, value_estimates, gamma=0.99, lambd=0.8, value_next=0.0):
returns = np.zeros_like(r)
returns[-1] = r[-1] + gamma * value_next

+ (1 - lambd) * gamma * value_estimates[t + 1]
)
return returns
def get_team_returns(
rewards,
baseline_estimates,
v_estimates,
value_next=0.0,
died=False,
gamma=0.99,
lambd=0.8,
):
"""
Computes generalized advantage estimate for use in updating policy.
:param rewards: list of rewards for time-steps t to T.
:param value_next: Value estimate for time-step T+1.
:param value_estimates: list of value estimates for time-steps t to T.
:param gamma: Discount factor.
:param lambd: GAE weighing factor.
:return: list of advantage estimates for time-steps t to T.
"""
returns_b = lambda_return(
rewards, baseline_estimates, gamma=gamma, lambd=lambd, value_next=value_next
)
returns_v = lambda_return(
rewards, v_estimates, gamma=gamma, lambd=lambd, value_next=value_next
)
return returns_v, returns_b

2
ml-agents/mlagents/trainers/trainer/trainer_factory.py


import os
from typing import Dict
from mlagents.trainers.coma.trainer import COMATrainer
from mlagents_envs.logging_util import get_logger
from mlagents.trainers.environment_parameter_manager import EnvironmentParameterManager

from mlagents.trainers.sac.trainer import SACTrainer
from mlagents.trainers.coma.trainer import COMATrainer
from mlagents.trainers.ghost.trainer import GhostTrainer
from mlagents.trainers.ghost.controller import GhostController
from mlagents.trainers.settings import TrainerSettings, TrainerType

正在加载...
取消
保存