浏览代码

[change] Ray Sensor interface improvements (#3449)

/asymm-envs
GitHub 5 年前
当前提交
61da8e9f
共有 6 个文件被更改,包括 345 次插入239 次删除
  1. 1
      com.unity.ml-agents/CHANGELOG.md
  2. 534
      com.unity.ml-agents/Runtime/Sensor/RayPerceptionSensor.cs
  3. 4
      com.unity.ml-agents/Runtime/Sensor/RayPerceptionSensorComponent2D.cs
  4. 4
      com.unity.ml-agents/Runtime/Sensor/RayPerceptionSensorComponent3D.cs
  5. 38
      com.unity.ml-agents/Runtime/Sensor/RayPerceptionSensorComponentBase.cs
  6. 3
      docs/Migrating.md

1
com.unity.ml-agents/CHANGELOG.md


- A tutorial on adding custom SideChannels was added (#3391)
- The stepping logic for the Agent and the Academy has been simplified (#3448)
- Update Barracuda to 0.6.0-preview
- The interface for `RayPerceptionSensor.PerceiveStatic()` was changed to take an input class and write to an output class.
- The checkpoint file suffix was changed from `.cptk` to `.ckpt` (#3470)
- The command-line argument used to determine the port that an environment will listen on was changed from `--port` to `--mlagents-port`.
- The method `GetStepCount()` on the Agent class has been replaced with the property getter `StepCount`

534
com.unity.ml-agents/Runtime/Sensor/RayPerceptionSensor.cs


namespace MLAgents
{
public class RayPerceptionSensor : ISensor
/// <summary>
/// Determines which dimensions the sensor will perform the casts in.
/// </summary>
public enum RayPerceptionCastType
{
/// Cast in 2 dimensions, using Physics2D.CircleCast or Physics2D.RayCast.
Cast2D,
/// Cast in 3 dimensions, using Physics.SphereCast or Physics.RayCast.
Cast3D,
}
public struct RayPerceptionInput
public enum CastType
{
Cast2D,
Cast3D,
}
/// <summary>
/// Length of the rays to cast. This will be scaled up or down based on the scale of the transform.
/// </summary>
public float rayLength;
/// <summary>
/// List of tags which correspond to object types agent can see.
/// </summary>
public IReadOnlyList<string> detectableTags;
/// <summary>
/// List of angles (in degrees) used to define the rays.
/// 90 degrees is considered "forward" relative to the game object.
/// </summary>
public IReadOnlyList<float> angles;
/// <summary>
/// Starting height offset of ray from center of agent
/// </summary>
public float startOffset;
float[] m_Observations;
int[] m_Shape;
string m_Name;
/// <summary>
/// Ending height offset of ray from center of agent.
/// </summary>
public float endOffset;
float m_RayDistance;
List<string> m_DetectableObjects;
float[] m_Angles;
/// <summary>
/// Radius of the sphere to use for spherecasting.
/// If 0 or less, rays are used instead - this may be faster, especially for complex environments.
/// </summary>
public float castRadius;
float m_StartOffset;
float m_EndOffset;
float m_CastRadius;
CastType m_CastType;
Transform m_Transform;
int m_LayerMask;
/// <summary>
/// Transform of the GameObject.
/// </summary>
public Transform transform;
/// Debug information for the raycast hits. This is used by the RayPerceptionSensorComponent.
/// Whether to perform the casts in 2D or 3D.
public class DebugDisplayInfo
public RayPerceptionCastType castType;
/// <summary>
/// Filtering options for the casts.
/// </summary>
public int layerMask;
/// <summary>
/// Returns the expected number of floats in the output.
/// </summary>
/// <returns></returns>
public int OutputSize()
public struct RayInfo
return (detectableTags.Count + 2) * angles.Count;
}
/// <summary>
/// Get the cast start and end points for the given ray index/
/// </summary>
/// <param name="rayIndex"></param>
/// <returns>A tuple of the start and end positions in world space.</returns>
public (Vector3 StartPositionWorld, Vector3 EndPositionWorld) RayExtents(int rayIndex)
{
var angle = angles[rayIndex];
Vector3 startPositionLocal, endPositionLocal;
if (castType == RayPerceptionCastType.Cast3D)
public Vector3 localStart;
public Vector3 localEnd;
public Vector3 worldStart;
public Vector3 worldEnd;
public bool castHit;
public float hitFraction;
public float castRadius;
startPositionLocal = new Vector3(0, startOffset, 0);
endPositionLocal = PolarToCartesian3D(rayLength, angle);
endPositionLocal.y += endOffset;
public void Reset()
else
m_Frame = Time.frameCount;
// Vector2s here get converted to Vector3s (and back to Vector2s for casting)
startPositionLocal = new Vector2();
endPositionLocal = PolarToCartesian2D(rayLength, angle);
var startPositionWorld = transform.TransformPoint(startPositionLocal);
var endPositionWorld = transform.TransformPoint(endPositionLocal);
return (StartPositionWorld: startPositionWorld, EndPositionWorld: endPositionWorld);
}
/// <summary>
/// Converts polar coordinate to cartesian coordinate.
/// </summary>
static internal Vector3 PolarToCartesian3D(float radius, float angleDegrees)
{
var x = radius * Mathf.Cos(Mathf.Deg2Rad * angleDegrees);
var z = radius * Mathf.Sin(Mathf.Deg2Rad * angleDegrees);
return new Vector3(x, 0f, z);
}
/// <summary>
/// Converts polar coordinate to cartesian coordinate.
/// </summary>
static internal Vector2 PolarToCartesian2D(float radius, float angleDegrees)
{
var x = radius * Mathf.Cos(Mathf.Deg2Rad * angleDegrees);
var y = radius * Mathf.Sin(Mathf.Deg2Rad * angleDegrees);
return new Vector2(x, y);
}
}
public class RayPerceptionOutput
{
public struct RayOutput
{
/// "Age" of the results in number of frames. This is used to adjust the alpha when drawing.
/// Whether or not the ray hit anything.
/// </summary>
public bool hasHit;
/// <summary>
/// Whether or not the ray hit an object whose tag is in the input's detectableTags list.
/// </summary>
public bool hitTaggedObject;
/// <summary>
/// The index of the hit object's tag in the detectableTags list, or -1 if there was no hit, or the
/// hit object has a different tag.
/// </summary>
public int hitTagIndex;
/// <summary>
/// Normalized distance to the hit object.
/// </summary>
public float hitFraction;
/// <summary>
/// Writes the ray output information to a subset of the float array. Each element in the rayAngles array
/// determines a sublist of data to the observation. The sublist contains the observation data for a single cast.
/// The list is composed of the following:
/// 1. A one-hot encoding for detectable tags. For example, if detectableTags.Length = n, the
/// first n elements of the sublist will be a one-hot encoding of the detectableTag that was hit, or
/// all zeroes otherwise.
/// 2. The 'numDetectableTags' element of the sublist will be 1 if the ray missed everything, or 0 if it hit
/// something (detectable or not).
/// 3. The 'numDetectableTags+1' element of the sublist will contain the normalized distance to the object
/// hit, or 1.0 if nothing was hit.
public int age
/// <param name="numDetectableTags"></param>
/// <param name="rayIndex"></param>
/// <param name="buffer">Output buffer. The size must be equal to (numDetectableTags+2) * rayOutputs.Length</param>
public void ToFloatArray(int numDetectableTags, int rayIndex, float[] buffer)
get { return Time.frameCount - m_Frame; }
var bufferOffset = (numDetectableTags + 2) * rayIndex;
if (hitTaggedObject)
{
buffer[bufferOffset + hitTagIndex] = 1f;
}
buffer[bufferOffset + numDetectableTags] = hasHit ? 0f : 1f;
buffer[bufferOffset + numDetectableTags + 1] = hitFraction;
}
/// <summary>
/// RayOutput for each ray that was cast.
/// </summary>
public RayOutput[] rayOutputs;
}
public RayInfo[] rayInfos;
/// <summary>
/// Debug information for the raycast hits. This is used by the RayPerceptionSensorComponent.
/// </summary>
internal class DebugDisplayInfo
{
public struct RayInfo
{
public Vector3 worldStart;
public Vector3 worldEnd;
public float castRadius;
public RayPerceptionOutput.RayOutput rayOutput;
}
public void Reset()
{
m_Frame = Time.frameCount;
}
int m_Frame;
/// <summary>
/// "Age" of the results in number of frames. This is used to adjust the alpha when drawing.
/// </summary>
public int age
{
get { return Time.frameCount - m_Frame; }
public RayInfo[] rayInfos;
int m_Frame;
}
public class RayPerceptionSensor : ISensor
{
float[] m_Observations;
int[] m_Shape;
string m_Name;
RayPerceptionInput m_RayPerceptionInput;
public DebugDisplayInfo debugDisplayInfo
internal DebugDisplayInfo debugDisplayInfo
public RayPerceptionSensor(string name, float rayDistance, List<string> detectableObjects, float[] angles,
Transform transform, float startOffset, float endOffset, float castRadius, CastType castType,
int rayLayerMask)
public RayPerceptionSensor(string name, RayPerceptionInput rayInput)
var numObservations = (detectableObjects.Count + 2) * angles.Length;
var numObservations = rayInput.OutputSize();
m_RayPerceptionInput = rayInput;
m_RayDistance = rayDistance;
m_DetectableObjects = detectableObjects;
// TODO - preprocess angles, save ray directions instead?
m_Angles = angles;
m_Transform = transform;
m_StartOffset = startOffset;
m_EndOffset = endOffset;
m_CastRadius = castRadius;
m_CastType = castType;
m_LayerMask = rayLayerMask;
if (Application.isEditor)
{

{
using (TimerStack.Instance.Scoped("RayPerceptionSensor.Perceive"))
{
PerceiveStatic(
m_RayDistance, m_Angles, m_DetectableObjects, m_StartOffset, m_EndOffset,
m_CastRadius, m_Transform, m_CastType, m_Observations, m_LayerMask,
m_DebugDisplayInfo
);
Array.Clear(m_Observations, 0, m_Observations.Length);
var numRays = m_RayPerceptionInput.angles.Count;
var numDetectableTags = m_RayPerceptionInput.detectableTags.Count;
if (m_DebugDisplayInfo != null)
{
// Reset the age information, and resize the buffer if needed.
m_DebugDisplayInfo.Reset();
if (m_DebugDisplayInfo.rayInfos == null || m_DebugDisplayInfo.rayInfos.Length != numRays)
{
m_DebugDisplayInfo.rayInfos = new DebugDisplayInfo.RayInfo[numRays];
}
}
// For each ray, do the casting, and write the information to the observation buffer
for (var rayIndex = 0; rayIndex < numRays; rayIndex++)
{
DebugDisplayInfo.RayInfo debugRay;
var rayOutput = PerceiveSingleRay(m_RayPerceptionInput, rayIndex, out debugRay);
if (m_DebugDisplayInfo != null)
{
m_DebugDisplayInfo.rayInfos[rayIndex] = debugRay;
}
rayOutput.ToFloatArray(numDetectableTags, rayIndex, m_Observations);
}
// Finally, add the observations to the WriteAdapter
adapter.AddRange(m_Observations);
}
return m_Observations.Length;

}
/// <summary>
/// Evaluates a perception vector to be used as part of an observation of an agent.
/// Each element in the rayAngles array determines a sublist of data to the observation.
/// The sublist contains the observation data for a single cast. The list is composed of the following:
/// 1. A one-hot encoding for detectable objects. For example, if detectableObjects.Length = n, the
/// first n elements of the sublist will be a one-hot encoding of the detectableObject that was hit, or
/// all zeroes otherwise.
/// 2. The 'length' element of the sublist will be 1 if the ray missed everything, or 0 if it hit
/// something (detectable or not).
/// 3. The 'length+1' element of the sublist will contain the normalised distance to the object hit, or 1 if
/// nothing was hit.
///
/// Evaluates the raycasts to be used as part of an observation of an agent.
/// <param name="unscaledRayLength"></param>
/// <param name="rayAngles">List of angles (in degrees) used to define the rays. 90 degrees is considered
/// "forward" relative to the game object</param>
/// <param name="detectableObjects">List of tags which correspond to object types agent can see</param>
/// <param name="startOffset">Starting height offset of ray from center of agent.</param>
/// <param name="endOffset">Ending height offset of ray from center of agent.</param>
/// <param name="unscaledCastRadius">Radius of the sphere to use for spherecasting. If 0 or less, rays are used
/// instead - this may be faster, especially for complex environments.</param>
/// <param name="transform">Transform of the GameObject</param>
/// <param name="castType">Whether to perform the casts in 2D or 3D.</param>
/// <param name="perceptionBuffer">Output array of floats. Must be (num rays) * (num tags + 2) in size.</param>
/// <param name="layerMask">Filtering options for the casts</param>
/// <param name="debugInfo">Optional debug information output, only used by RayPerceptionSensor.</param>
/// <param name="input">Input defining the rays that will be cast.</param>
/// <param name="output">Output class that will be written to with raycast results.</param>
public static void PerceiveStatic(float unscaledRayLength,
IReadOnlyList<float> rayAngles, IReadOnlyList<string> detectableObjects,
float startOffset, float endOffset, float unscaledCastRadius,
Transform transform, CastType castType, float[] perceptionBuffer,
int layerMask = Physics.DefaultRaycastLayers,
DebugDisplayInfo debugInfo = null)
public static RayPerceptionOutput PerceiveStatic(RayPerceptionInput input)
Array.Clear(perceptionBuffer, 0, perceptionBuffer.Length);
if (debugInfo != null)
RayPerceptionOutput output = new RayPerceptionOutput();
output.rayOutputs = new RayPerceptionOutput.RayOutput[input.angles.Count];
for (var rayIndex = 0; rayIndex < input.angles.Count; rayIndex++)
debugInfo.Reset();
if (debugInfo.rayInfos == null || debugInfo.rayInfos.Length != rayAngles.Count)
{
debugInfo.rayInfos = new DebugDisplayInfo.RayInfo[rayAngles.Count];
}
DebugDisplayInfo.RayInfo debugRay;
output.rayOutputs[rayIndex] = PerceiveSingleRay(input, rayIndex, out debugRay);
// For each ray sublist stores categorical information on detected object
// along with object distance.
int bufferOffset = 0;
for (var rayIndex = 0; rayIndex < rayAngles.Count; rayIndex++)
{
var angle = rayAngles[rayIndex];
Vector3 startPositionLocal, endPositionLocal;
if (castType == CastType.Cast3D)
{
startPositionLocal = new Vector3(0, startOffset, 0);
endPositionLocal = PolarToCartesian3D(unscaledRayLength, angle);
endPositionLocal.y += endOffset;
}
else
{
// Vector2s here get converted to Vector3s (and back to Vector2s for casting)
startPositionLocal = new Vector2();
endPositionLocal = PolarToCartesian2D(unscaledRayLength, angle);
}
return output;
}
var startPositionWorld = transform.TransformPoint(startPositionLocal);
var endPositionWorld = transform.TransformPoint(endPositionLocal);
/// <summary>
/// Evaluate the raycast results of a single ray from the RayPerceptionInput.
/// </summary>
/// <param name="input"></param>
/// <param name="rayIndex"></param>
/// <param name="debugRayOut"></param>
/// <returns></returns>
static RayPerceptionOutput.RayOutput PerceiveSingleRay(
RayPerceptionInput input,
int rayIndex,
out DebugDisplayInfo.RayInfo debugRayOut
)
{
var unscaledRayLength = input.rayLength;
var unscaledCastRadius = input.castRadius;
var rayDirection = endPositionWorld - startPositionWorld;
// If there is non-unity scale, |rayDirection| will be different from rayLength.
// We want to use this transformed ray length for determining cast length, hit fraction etc.
// We also it to scale up or down the sphere or circle radii
var scaledRayLength = rayDirection.magnitude;
// Avoid 0/0 if unscaledRayLength is 0
var scaledCastRadius = unscaledRayLength > 0 ? unscaledCastRadius * scaledRayLength / unscaledRayLength : unscaledCastRadius;
var extents = input.RayExtents(rayIndex);
var startPositionWorld = extents.StartPositionWorld;
var endPositionWorld = extents.EndPositionWorld;
// Do the cast and assign the hit information for each detectable object.
// sublist[0 ] <- did hit detectableObjects[0]
// ...
// sublist[numObjects-1] <- did hit detectableObjects[numObjects-1]
// sublist[numObjects ] <- 1 if missed else 0
// sublist[numObjects+1] <- hit fraction (or 1 if no hit)
var rayDirection = endPositionWorld - startPositionWorld;
// If there is non-unity scale, |rayDirection| will be different from rayLength.
// We want to use this transformed ray length for determining cast length, hit fraction etc.
// We also it to scale up or down the sphere or circle radii
var scaledRayLength = rayDirection.magnitude;
// Avoid 0/0 if unscaledRayLength is 0
var scaledCastRadius = unscaledRayLength > 0 ?
unscaledCastRadius * scaledRayLength / unscaledRayLength :
unscaledCastRadius;
bool castHit;
float hitFraction;
GameObject hitObject;
// Do the cast and assign the hit information for each detectable tag.
bool castHit;
float hitFraction;
GameObject hitObject;
if (castType == CastType.Cast3D)
if (input.castType == RayPerceptionCastType.Cast3D)
{
RaycastHit rayHit;
if (scaledCastRadius > 0f)
RaycastHit rayHit;
if (scaledCastRadius > 0f)
{
castHit = Physics.SphereCast(startPositionWorld, scaledCastRadius, rayDirection, out rayHit,
scaledRayLength, layerMask);
}
else
{
castHit = Physics.Raycast(startPositionWorld, rayDirection, out rayHit,
scaledRayLength, layerMask);
}
// If scaledRayLength is 0, we still could have a hit with sphere casts (maybe?).
// To avoid 0/0, set the fraction to 0.
hitFraction = castHit ? (scaledRayLength > 0 ? rayHit.distance / scaledRayLength : 0.0f) : 1.0f;
hitObject = castHit ? rayHit.collider.gameObject : null;
castHit = Physics.SphereCast(startPositionWorld, scaledCastRadius, rayDirection, out rayHit,
scaledRayLength, input.layerMask);
RaycastHit2D rayHit;
if (scaledCastRadius > 0f)
{
rayHit = Physics2D.CircleCast(startPositionWorld, scaledCastRadius, rayDirection,
scaledRayLength, layerMask);
}
else
{
rayHit = Physics2D.Raycast(startPositionWorld, rayDirection, scaledRayLength, layerMask);
}
castHit = rayHit;
hitFraction = castHit ? rayHit.fraction : 1.0f;
hitObject = castHit ? rayHit.collider.gameObject : null;
castHit = Physics.Raycast(startPositionWorld, rayDirection, out rayHit,
scaledRayLength, input.layerMask);
if (debugInfo != null)
// If scaledRayLength is 0, we still could have a hit with sphere casts (maybe?).
// To avoid 0/0, set the fraction to 0.
hitFraction = castHit ? (scaledRayLength > 0 ? rayHit.distance / scaledRayLength : 0.0f) : 1.0f;
hitObject = castHit ? rayHit.collider.gameObject : null;
}
else
{
RaycastHit2D rayHit;
if (scaledCastRadius > 0f)
debugInfo.rayInfos[rayIndex].localStart = startPositionLocal;
debugInfo.rayInfos[rayIndex].localEnd = endPositionLocal;
debugInfo.rayInfos[rayIndex].worldStart = startPositionWorld;
debugInfo.rayInfos[rayIndex].worldEnd = endPositionWorld;
debugInfo.rayInfos[rayIndex].castHit = castHit;
debugInfo.rayInfos[rayIndex].hitFraction = hitFraction;
debugInfo.rayInfos[rayIndex].castRadius = scaledCastRadius;
rayHit = Physics2D.CircleCast(startPositionWorld, scaledCastRadius, rayDirection,
scaledRayLength, input.layerMask);
else if (Application.isEditor)
else
// Legacy drawing
Debug.DrawRay(startPositionWorld, rayDirection, Color.black, 0.01f, true);
rayHit = Physics2D.Raycast(startPositionWorld, rayDirection, scaledRayLength, input.layerMask);
if (castHit)
castHit = rayHit;
hitFraction = castHit ? rayHit.fraction : 1.0f;
hitObject = castHit ? rayHit.collider.gameObject : null;
}
var rayOutput = new RayPerceptionOutput.RayOutput
{
hasHit = castHit,
hitFraction = hitFraction,
hitTaggedObject = false,
hitTagIndex = -1
};
if (castHit)
{
// Find the index of the tag of the object that was hit.
for (var i = 0; i < input.detectableTags.Count; i++)
bool hitTaggedObject = false;
for (var i = 0; i < detectableObjects.Count; i++)
if (hitObject.CompareTag(input.detectableTags[i]))
if (hitObject.CompareTag(detectableObjects[i]))
{
perceptionBuffer[bufferOffset + i] = 1;
perceptionBuffer[bufferOffset + detectableObjects.Count + 1] = hitFraction;
hitTaggedObject = true;
break;
}
}
if (!hitTaggedObject)
{
// Something was hit but not on the list. Still set the hit fraction.
perceptionBuffer[bufferOffset + detectableObjects.Count + 1] = hitFraction;
rayOutput.hitTaggedObject = true;
rayOutput.hitTagIndex = i;
break;
else
{
perceptionBuffer[bufferOffset + detectableObjects.Count] = 1f;
// Nothing was hit, so there's full clearance in front of the agent.
perceptionBuffer[bufferOffset + detectableObjects.Count + 1] = 1.0f;
}
}
bufferOffset += detectableObjects.Count + 2;
}
}
debugRayOut.worldStart = startPositionWorld;
debugRayOut.worldEnd = endPositionWorld;
debugRayOut.rayOutput = rayOutput;
debugRayOut.castRadius = scaledCastRadius;
/// <summary>
/// Converts polar coordinate to cartesian coordinate.
/// </summary>
static Vector3 PolarToCartesian3D(float radius, float angleDegrees)
{
var x = radius * Mathf.Cos(Mathf.Deg2Rad * angleDegrees);
var z = radius * Mathf.Sin(Mathf.Deg2Rad * angleDegrees);
return new Vector3(x, 0f, z);
}
return rayOutput;
/// <summary>
/// Converts polar coordinate to cartesian coordinate.
/// </summary>
static Vector2 PolarToCartesian2D(float radius, float angleDegrees)
{
var x = radius * Mathf.Cos(Mathf.Deg2Rad * angleDegrees);
var y = radius * Mathf.Sin(Mathf.Deg2Rad * angleDegrees);
return new Vector2(x, y);
}
}
}

4
com.unity.ml-agents/Runtime/Sensor/RayPerceptionSensorComponent2D.cs


rayLayerMask = Physics2D.DefaultRaycastLayers;
}
public override RayPerceptionSensor.CastType GetCastType()
public override RayPerceptionCastType GetCastType()
return RayPerceptionSensor.CastType.Cast2D;
return RayPerceptionCastType.Cast2D;
}
}
}

4
com.unity.ml-agents/Runtime/Sensor/RayPerceptionSensorComponent3D.cs


[Tooltip("Ray end is offset up or down by this amount.")]
public float endVerticalOffset;
public override RayPerceptionSensor.CastType GetCastType()
public override RayPerceptionCastType GetCastType()
return RayPerceptionSensor.CastType.Cast3D;
return RayPerceptionCastType.Cast3D;
}
public override float GetStartVerticalOffset()

38
com.unity.ml-agents/Runtime/Sensor/RayPerceptionSensorComponentBase.cs


[Header("Debug Gizmos", order = 999)]
public Color rayHitColor = Color.red;
public Color rayMissColor = Color.white;
[Tooltip("Whether to draw the raycasts in the world space of when they happened, or using the Agent's current transform'")]
public bool useWorldPositions = true;
public abstract RayPerceptionSensor.CastType GetCastType();
public abstract RayPerceptionCastType GetCastType();
public virtual float GetStartVerticalOffset()
{

public override ISensor CreateSensor()
{
var rayAngles = GetRayAngles(raysPerDirection, maxRayDegrees);
m_RaySensor = new RayPerceptionSensor(sensorName, rayLength, detectableTags, rayAngles,
transform, GetStartVerticalOffset(), GetEndVerticalOffset(), sphereCastRadius, GetCastType(),
rayLayerMask
);
var rayPerceptionInput = new RayPerceptionInput();
rayPerceptionInput.rayLength = rayLength;
rayPerceptionInput.detectableTags = detectableTags;
rayPerceptionInput.angles = rayAngles;
rayPerceptionInput.startOffset = GetStartVerticalOffset();
rayPerceptionInput.endOffset = GetEndVerticalOffset();
rayPerceptionInput.castRadius = sphereCastRadius;
rayPerceptionInput.transform = transform;
rayPerceptionInput.castType = GetCastType();
rayPerceptionInput.layerMask = rayLayerMask;
m_RaySensor = new RayPerceptionSensor(sensorName, rayPerceptionInput);
if (observationStacks != 1)
{

public override int[] GetObservationShape()
{
var numRays = 2 * raysPerDirection + 1;
var numTags = detectableTags == null ? 0 : detectableTags.Count;
var numTags = detectableTags?.Count ?? 0;
var obsSize = (numTags + 2) * numRays;
var stacks = observationStacks > 1 ? observationStacks : 1;
return new[] { obsSize * stacks };

foreach (var rayInfo in debugInfo.rayInfos)
{
// Either use the original world-space coordinates of the raycast, or transform the agent-local
// coordinates of the rays to the current transform of the agent. If the agent acts every frame,
// these should be the same.
if (!useWorldPositions)
{
startPositionWorld = transform.TransformPoint(rayInfo.localStart);
endPositionWorld = transform.TransformPoint(rayInfo.localEnd);
}
rayDirection *= rayInfo.hitFraction;
rayDirection *= rayInfo.rayOutput.hitFraction;
var lerpT = rayInfo.hitFraction * rayInfo.hitFraction;
var lerpT = rayInfo.rayOutput.hitFraction * rayInfo.rayOutput.hitFraction;
var color = Color.Lerp(rayHitColor, rayMissColor, lerpT);
color.a *= alpha;
Gizmos.color = color;

if (rayInfo.castHit)
if (rayInfo.rayOutput.hasHit)
{
var hitRadius = Mathf.Max(rayInfo.castRadius, .05f);
Gizmos.DrawWireSphere(startPositionWorld + rayDirection, hitRadius);

3
docs/Migrating.md


### Important changes
* The `Agent.CollectObservations()` virtual method now takes as input a `VectorSensor` sensor as argument. The `Agent.AddVectorObs()` methods were removed.
* The `SetActionMask` method must now be called on the optional `ActionMasker` argument of the `CollectObservations` method. (We now consider an action mask as a type of observation)
* The interface for `RayPerceptionSensor.PerceiveStatic()` was changed to take an input class and write to an output class.
* The `SetActionMask` method must now be called on the optional `ActionMasker` argument of the `CollectObservations` method. (We now consider an action mask as a type of observation)
* The method `GetStepCount()` on the Agent class has been replaced with the property getter `StepCount`

* If you call `RayPerceptionSensor.PerceiveStatic()` manually, add your inputs to a `RayPerceptionInput`. To get the previous float array output, use `RayPerceptionOutput.ToFloatArray()`
* Re-import all of your `*.NN` files to work with the updated Barracuda package.
* Replace all calls to `Agent.GetStepCount()` with `Agent.StepCount`

正在加载...
取消
保存