浏览代码

Merge branch 'main' into develop-agentprocessor-teammanager

/develop/coma2/samenet
Ervin Teng 4 年前
当前提交
61781a1a
共有 73 个文件被更改,包括 3620 次插入1753 次删除
  1. 2
      Project/Assets/ML-Agents/Examples/Match3/Prefabs/Match3VisualObs.prefab
  2. 1001
      Project/Assets/ML-Agents/Examples/Match3/TFModels/Match3VectorObs.onnx
  3. 17
      README.md
  4. 16
      com.unity.ml-agents.extensions/Documentation~/Grid-Sensor.md
  5. 2
      com.unity.ml-agents.extensions/Documentation~/Match3.md
  6. 9
      com.unity.ml-agents.extensions/Documentation~/com.unity.ml-agents.extensions.md
  7. 12
      com.unity.ml-agents.extensions/Runtime/Input/InputActionActuator.cs
  8. 6
      com.unity.ml-agents.extensions/Runtime/Input/InputActuatorComponent.cs
  9. 9
      com.unity.ml-agents.extensions/Runtime/Match3/Match3Actuator.cs
  10. 1
      com.unity.ml-agents.extensions/Runtime/Match3/Match3ActuatorComponent.cs
  11. 2
      com.unity.ml-agents.extensions/Runtime/Match3/Match3SensorComponent.cs
  12. 2
      com.unity.ml-agents.extensions/Runtime/Sensors/GridSensor.cs
  13. 2
      com.unity.ml-agents.extensions/Tests/Runtime/Input/Unity.ML-Agents.Extensions.Input.Tests.Runtime.asmdef
  14. 2
      com.unity.ml-agents.extensions/package.json
  15. 4
      com.unity.ml-agents/Documentation~/com.unity.ml-agents.md
  16. 4
      com.unity.ml-agents/Runtime/Academy.cs
  17. 1
      com.unity.ml-agents/Runtime/Actuators/ActionSpec.cs
  18. 2
      com.unity.ml-agents/Runtime/Actuators/IActionReceiver.cs
  19. 2
      com.unity.ml-agents/Runtime/Actuators/IDiscreteActionMask.cs
  20. 8
      com.unity.ml-agents/Runtime/Actuators/VectorActuator.cs
  21. 47
      com.unity.ml-agents/Runtime/Agent.cs
  22. 31
      com.unity.ml-agents/Runtime/Analytics/Events.cs
  23. 18
      com.unity.ml-agents/Runtime/Analytics/InferenceAnalytics.cs
  24. 17
      com.unity.ml-agents/Runtime/Analytics/TrainingAnalytics.cs
  25. 9
      com.unity.ml-agents/Runtime/Communicator/RpcCommunicator.cs
  26. 3
      com.unity.ml-agents/Runtime/Constants.cs
  27. 2
      com.unity.ml-agents/Runtime/Demonstrations/DemonstrationRecorder.cs
  28. 2
      com.unity.ml-agents/Runtime/DiscreteActionMasker.cs
  29. 10
      com.unity.ml-agents/Runtime/Policies/BarracudaPolicy.cs
  30. 6
      com.unity.ml-agents/Runtime/Policies/BehaviorParameters.cs
  31. 10
      com.unity.ml-agents/Runtime/Policies/RemotePolicy.cs
  32. 38
      com.unity.ml-agents/Runtime/Sensors/IBuiltInSensor.cs
  33. 6
      com.unity.ml-agents/Runtime/Sensors/ObservationWriter.cs
  34. 5
      com.unity.ml-agents/Runtime/SideChannels/TrainingAnalyticsSideChannel.cs
  35. 18
      com.unity.ml-agents/Tests/Editor/Analytics/InferenceAnalyticsTests.cs
  36. 38
      com.unity.ml-agents/Tests/Editor/Analytics/TrainingAnalyticsTest.cs
  37. 86
      config/ppo/Match3.yaml
  38. 1
      config/ppo/PyramidsRND.yaml
  39. 4
      docs/Installation-Anaconda-Windows.md
  40. 6
      docs/Installation.md
  41. 4
      docs/Learning-Environment-Examples.md
  42. 25
      docs/ML-Agents-Overview.md
  43. 2
      docs/Training-on-Amazon-Web-Service.md
  44. 4
      docs/Unity-Inference-Engine.md
  45. 12
      ml-agents/mlagents/trainers/action_info.py
  46. 2
      ml-agents/mlagents/trainers/agent_processor.py
  47. 1
      ml-agents/mlagents/trainers/buffer.py
  48. 140
      ml-agents/mlagents/trainers/optimizer/torch_optimizer.py
  49. 15
      ml-agents/mlagents/trainers/policy/policy.py
  50. 62
      ml-agents/mlagents/trainers/policy/torch_policy.py
  51. 39
      ml-agents/mlagents/trainers/ppo/optimizer_torch.py
  52. 4
      ml-agents/mlagents/trainers/ppo/trainer.py
  53. 96
      ml-agents/mlagents/trainers/sac/optimizer_torch.py
  54. 9
      ml-agents/mlagents/trainers/sac/trainer.py
  55. 7
      ml-agents/mlagents/trainers/tests/test_agent_processor.py
  56. 4
      ml-agents/mlagents/trainers/tests/torch/saver/test_saver.py
  57. 23
      ml-agents/mlagents/trainers/tests/torch/test_networks.py
  58. 4
      ml-agents/mlagents/trainers/tests/torch/test_policy.py
  59. 12
      ml-agents/mlagents/trainers/tests/torch/test_ppo.py
  60. 4
      ml-agents/mlagents/trainers/tests/torch/test_sac.py
  61. 6
      ml-agents/mlagents/trainers/tests/torch/test_simple_rl.py
  62. 2
      ml-agents/mlagents/trainers/torch/components/bc/module.py
  63. 2
      ml-agents/mlagents/trainers/torch/model_serialization.py
  64. 282
      ml-agents/mlagents/trainers/torch/networks.py
  65. 1
      utils/make_readme_table.py
  66. 69
      utils/validate_release_links.py
  67. 1001
      Project/Assets/ML-Agents/Examples/Match3/TFModels/Match3VisualObs.onnx
  68. 15
      Project/Assets/ML-Agents/Examples/Match3/TFModels/Match3VisualObs.onnx.meta
  69. 49
      com.unity.ml-agents/Runtime/Actuators/IBuiltInActuator.cs
  70. 3
      com.unity.ml-agents/Runtime/Actuators/IBuiltInActuator.cs.meta
  71. 1001
      docs/images/variable-length-observation-illustrated.png
  72. 1001
      Project/Assets/ML-Agents/Examples/Match3/TFModels/Match3VisualObs.nn
  73. 11
      Project/Assets/ML-Agents/Examples/Match3/TFModels/Match3VisualObs.nn.meta

2
Project/Assets/ML-Agents/Examples/Match3/Prefabs/Match3VisualObs.prefab


VectorActionDescriptions: []
VectorActionSpaceType: 0
hasUpgradedBrainParametersWithActionSpec: 1
m_Model: {fileID: 11400000, guid: 48d14da88fea74d0693c691c6e3f2e34, type: 3}
m_Model: {fileID: 11400000, guid: 28ccdfd7cb3d941ce8af0ab89e06130a, type: 3}
m_InferenceDevice: 2
m_BehaviorType: 0
m_BehaviorName: Match3VisualObs

1001
Project/Assets/ML-Agents/Examples/Match3/TFModels/Match3VectorObs.onnx
文件差异内容过多而无法显示
查看文件

17
README.md


# Unity ML-Agents Toolkit
[![docs badge](https://img.shields.io/badge/docs-reference-blue.svg)](https://github.com/Unity-Technologies/ml-agents/tree/release_12_docs/docs/)
[![docs badge](https://img.shields.io/badge/docs-reference-blue.svg)](https://github.com/Unity-Technologies/ml-agents/tree/release_13_docs/docs/)
[![license badge](https://img.shields.io/badge/license-Apache--2.0-green.svg)](LICENSE)

## Features
- 15+ [example Unity environments](docs/Learning-Environment-Examples.md)
- 18+ [example Unity environments](docs/Learning-Environment-Examples.md)
- Built-in support for Imitation Learning through Behavioral Cloning or
Generative Adversarial Imitation Learning
- Built-in support for Imitation Learning through Behavioral Cloning (BC) or
Generative Adversarial Imitation Learning (GAIL)
- Self-play mechanism for training agents in adversarial scenarios
- Easily definable Curriculum Learning scenarios for complex tasks
- Train robust agents using environment randomization

## Releases & Documentation
**Our latest, stable release is `Release 12`. Click
[here](https://github.com/Unity-Technologies/ml-agents/tree/release_12_docs/docs/Readme.md)
**Our latest, stable release is `Release 13`. Click
[here](https://github.com/Unity-Technologies/ml-agents/tree/release_13_docs/docs/Readme.md)
to get started with the latest release of ML-Agents.**
The table below lists all our releases, including our `master` branch which is

| **Version** | **Release Date** | **Source** | **Documentation** | **Download** | **Python Package** | **Unity Package** |
|:-------:|:------:|:-------------:|:-------:|:------------:|:------------:|:------------:|
| **master (unstable)** | -- | [source](https://github.com/Unity-Technologies/ml-agents/tree/master) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/master/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/master.zip) | -- | -- |
| **Release 12** | **December 22, 2020** | **[source](https://github.com/Unity-Technologies/ml-agents/tree/release_12)** | **[docs](https://github.com/Unity-Technologies/ml-agents/tree/release_12_docs/docs/Readme.md)** | **[download](https://github.com/Unity-Technologies/ml-agents/archive/release_12.zip)** | **[0.23.0](https://pypi.org/project/mlagents/0.23.0/)** | **[1.7.2](https://docs.unity3d.com/Packages/com.unity.ml-agents@1.7/manual/index.html)** |
| **Release 13** | **February 17, 2021** | **[source](https://github.com/Unity-Technologies/ml-agents/tree/release_13)** | **[docs](https://github.com/Unity-Technologies/ml-agents/tree/release_13_docs/docs/Readme.md)** | **[download](https://github.com/Unity-Technologies/ml-agents/archive/release_13.zip)** | **[0.24.0](https://pypi.org/project/mlagents/0.24.0/)** | **[1.8.0](https://docs.unity3d.com/Packages/com.unity.ml-agents@1.8/manual/index.html)** |
| **Release 12** | December 22, 2020 | [source](https://github.com/Unity-Technologies/ml-agents/tree/release_12) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/release_12_docs/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/release_12.zip) | [0.23.0](https://pypi.org/project/mlagents/0.23.0/) | [1.7.2](https://docs.unity3d.com/Packages/com.unity.ml-agents@1.7/manual/index.html) |
| **Release 11** | December 21, 2020 | [source](https://github.com/Unity-Technologies/ml-agents/tree/release_11) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/release_11_docs/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/release_11.zip) | [0.23.0](https://pypi.org/project/mlagents/0.23.0/) | [1.7.0](https://docs.unity3d.com/Packages/com.unity.ml-agents@1.7/manual/index.html) |
| **Release 10** | November 18, 2020 | [source](https://github.com/Unity-Technologies/ml-agents/tree/release_10) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/release_10_docs/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/release_10.zip) | [0.22.0](https://pypi.org/project/mlagents/0.22.0/) | [1.6.0](https://docs.unity3d.com/Packages/com.unity.ml-agents@1.6/manual/index.html) |
| **Verified Package 1.0.6** | **November 16, 2020** | **[source](https://github.com/Unity-Technologies/ml-agents/tree/com.unity.ml-agents_1.0.6)** | **[docs](https://github.com/Unity-Technologies/ml-agents/blob/release_2_verified_docs/docs/Readme.md)** | **[download](https://github.com/Unity-Technologies/ml-agents/archive/com.unity.ml-agents_1.0.6.zip)** | **[0.16.1](https://pypi.org/project/mlagents/0.16.1/)** | **[1.0.6](https://docs.unity3d.com/Packages/com.unity.ml-agents@1.0/manual/index.html)** |

| **Release 7** | September 16, 2020 | [source](https://github.com/Unity-Technologies/ml-agents/tree/release_7) | [docs](https://github.com/Unity-Technologies/ml-agents/tree/release_7_docs/docs/Readme.md) | [download](https://github.com/Unity-Technologies/ml-agents/archive/release_7.zip) | [0.20.0](https://pypi.org/project/mlagents/0.20.0/) | [1.4.0](https://docs.unity3d.com/Packages/com.unity.ml-agents@1.4/manual/index.html) |
If you are a researcher interested in a discussion of Unity as an AI platform,
see a pre-print of our

16
com.unity.ml-agents.extensions/Documentation~/Grid-Sensor.md


# Contribution
An image can be thought of as a matrix of a predefined width (W) and a height (H) and each pixel can be thought of as simply an array of length 3 (in the case of RGB), `[Red, Green, Blue]` holding the different channel information of the color (channel) intensities at that pixel location. Thus an image is just a 3 dimensional matrix of size WxHx3. A Grid Observation can be thought of as a generalization of this setup where in place of a pixel there is a "cell" which is an array of length N representing different channel intensities at that cell position. From a Convolutional Neural Network point of view, the introduction of multiple channels in an "image" isn't a new concept. One such example is using an RGB-Depth image which is used in several robotics applications. The distinction of Grid Observations is what the data within the channels represents. Instead of limiting the channels to color intensities, the channels within a cell of a Grid Observation generalize to any data that can be represented by a single number (float or int).
Before jumping into the details of the Grid Sensor, an important thing to note is the agent performance and qualitatively different behavior over raycasts. Unity MLAgent's comes with a suite of example environments. One in particular, the [Food Collector](https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Learning-Environment-Examples.md#food-collector), has been the focus of the Grid Sensor development.
The Food Collector environment can be described as:
* Set-up: A multi-agent environment where agents compete to collect food.
* Goal: The agents must learn to collect as many green food spheres as possible while avoiding red spheres.
* Agents: The environment contains 5 agents with same Behavior Parameters.
When applying the Grid Sensor to this environment, in place of the Raycast Vector Sensor or the Camera Sensor, a Mean Reward of 40-50 is observed. This performance is on par with what is seen by agents trained with RayCasts but the side-by-side comparison of trained agents, shows a qualitative difference in behavior. A deeper study and interpretation of the qualitative differences between agents trained with Raycasts and Vector Sensors verses Grid Sensors is left to future studies.
<img src="images/gridobs-vs-vectorobs.gif" align="middle" width="3000"/>
## Overview
There are three main phases to the observation process of the Grid Sensor:

### Channel Based
The Channel Based Grid Observations represent obsevations in a normalized form with 0 to 1. To distinguish between categorical and continuous data, one would use the ChannelDepth array to signify the ranges that the values in the `channelValues` array could take. If one sets ChannelDepth[i] to be 1, it is assumed that the value of `channelValues[i]` is already normalized. Else ChannelDepth[i] represents the total number of possible values that `channelValues[i]` can take and will be used for normalization.
The Channel Based Grid Observations is perhaps the simplest in terms of usability and similarity with other machine learning applications. Each grid is of size WxHxC where C is the number of channels. To distinguish between categorical and continuous data, one would use the ChannelDepth array to signify the ranges that the values in the `channelValues` array could take. If one sets ChannelDepth[i] to be 1, it is assumed that the value of `channelValues[i]` is already normalized. Else ChannelDepth[i] represents the total number of possible values that `channelValues[i]` can take.
As the "enemy" is in the second position of the observed tags, its value can be normalized by:
For ObjectType, "weapon", "enemy" will be represented respectively as:
```
weapon = DetectableObjects.IndexOfTag("weapon")/ChannelDepth[0] = 1/2 = 0.5;

2
com.unity.ml-agents.extensions/Documentation~/Match3.md


This implementation includes:
* C# implementation catered toward a Match-3 setup including concepts around encoding for moves based on [Human Like Playtesting with Deep Learning](https://www.researchgate.net/publication/328307928_Human-Like_Playtesting_with_Deep_Learning)
* An example Match-3 scene with ML-Agents implemented (located under /Project/Assets/ML-Agents/Examples/Match3). More information, on Match-3 example [here](https://github.com/Unity-Technologies/ml-agents/tree/release_12_docs/docs/docs/Learning-Environment-Examples.md#match-3).
* An example Match-3 scene with ML-Agents implemented (located under /Project/Assets/ML-Agents/Examples/Match3). More information, on Match-3 example [here](https://github.com/Unity-Technologies/ml-agents/tree/release_13_docs/docs/docs/Learning-Environment-Examples.md#match-3).
### Feedback
If you are a Match-3 developer and are trying to leverage ML-Agents for this scenario, [we want to hear from you](https://forms.gle/TBsB9jc8WshgzViU9). Additionally, we are also looking for interested Match-3 teams to speak with us for 45 minutes. If you are interested, please indicate that in the [form](https://forms.gle/TBsB9jc8WshgzViU9). If selected, we will provide gift cards as a token of appreciation.

9
com.unity.ml-agents.extensions/Documentation~/com.unity.ml-agents.extensions.md


recommended ways to install the package:
### Local Installation
[Clone the repository](https://github.com/Unity-Technologies/ml-agents/tree/release_12_docs/docs/Installation.md#clone-the-ml-agents-toolkit-repository-optional) and follow the
[Local Installation for Development](https://github.com/Unity-Technologies/ml-agents/tree/release_12_docs/docs/Installation.md#advanced-local-installation-for-development-1)
[Clone the repository](https://github.com/Unity-Technologies/ml-agents/tree/release_13_docs/docs/Installation.md#clone-the-ml-agents-toolkit-repository-optional) and follow the
[Local Installation for Development](https://github.com/Unity-Technologies/ml-agents/tree/release_13_docs/docs/Installation.md#advanced-local-installation-for-development-1)
![Package Manager git URL](https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/images/unity_package_manager_git_url.png)
![Package Manager git URL](https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/images/unity_package_manager_git_url.png)
In the dialog that appears, enter
```
git+https://github.com/Unity-Technologies/ml-agents.git?path=com.unity.ml-agents.extensions

- No way to customize the action space of the `InputActuatorComponent`
## Need Help?
The main [README](https://github.com/Unity-Technologies/ml-agents/tree/release_12_docs/README.md) contains links for contacting the team or getting support.
The main [README](https://github.com/Unity-Technologies/ml-agents/tree/release_13_docs/README.md) contains links for contacting the team or getting support.

12
com.unity.ml-agents.extensions/Runtime/Input/InputActionActuator.cs


/// <see cref="Agent"/>'s <see cref="BehaviorParameters"/> indicate that the Agent is running in Heuristic Mode,
/// this Actuator will write actions from the <see cref="InputSystem"/> to the <see cref="ActionBuffers"/> object.
/// </summary>
public class InputActionActuator : IActuator, IHeuristicProvider
public class InputActionActuator : IActuator, IHeuristicProvider, IBuiltInActuator
{
readonly BehaviorParameters m_BehaviorParameters;
readonly InputAction m_Action;

/// <param name="adaptor">The <see cref="IRLActionInputAdaptor"/> that will convert data between ML-Agents
/// and the <see cref="InputSystem"/>.</param>
public InputActionActuator(InputDevice inputDevice, BehaviorParameters behaviorParameters,
InputAction action,
IRLActionInputAdaptor adaptor)
InputAction action,
IRLActionInputAdaptor adaptor)
{
m_BehaviorParameters = behaviorParameters;
Name = $"InputActionActuator-{action.name}";

Profiler.BeginSample("InputActionActuator.Heuristic");
m_InputAdaptor.WriteToHeuristic(m_Action, actionBuffersOut);
Profiler.EndSample();
}
/// <inheritdoc/>
public BuiltInActuatorType GetBuiltInActuatorType()
{
return BuiltInActuatorType.InputActionActuator;
}
}
}

6
com.unity.ml-agents.extensions/Runtime/Input/InputActuatorComponent.cs


/// <see cref="InputActionActuator"/>s.
/// </summary>
[RequireComponent(typeof(PlayerInput), typeof(IInputActionAssetProvider))]
[AddComponentMenu("ML Agents/Input Actuator", (int)MenuGroup.Actuators)]
public class InputActuatorComponent : ActuatorComponent
{
InputActionAsset m_InputAsset;

}
var inputControlScheme = new InputControlScheme(
mlAgentsControlSchemeName,
mlAgentsControlSchemeName,
deviceRequirements);
return inputControlScheme;

var builder = new InputControlLayout.Builder()
.WithName(layoutName)
.WithFormat(mlAgentsLayoutFormat);
for(var i = 0; i < defaultMap.actions.Count; i++)
for (var i = 0; i < defaultMap.actions.Count; i++)
{
var action = defaultMap.actions[i];
builder.AddControl(action.name)

}, layoutName);
}
}

9
com.unity.ml-agents.extensions/Runtime/Match3/Match3Actuator.cs


/// Actuator for a Match3 game. It translates valid moves (defined by AbstractBoard.IsMoveValid())
/// in action masks, and applies the action to the board via AbstractBoard.MakeMove().
/// </summary>
public class Match3Actuator : IActuator, IHeuristicProvider
public class Match3Actuator : IActuator, IHeuristicProvider, IBuiltInActuator
{
protected AbstractBoard m_Board;
protected System.Random m_Random;

/// <inheritdoc/>
public void ResetData()
{
}
/// <inheritdoc/>
public BuiltInActuatorType GetBuiltInActuatorType()
{
return BuiltInActuatorType.Match3Actuator;
}
IEnumerable<int> InvalidMoveIndices()

{
return 1;
}
}
}

1
com.unity.ml-agents.extensions/Runtime/Match3/Match3ActuatorComponent.cs


/// <summary>
/// Actuator component for a Match3 game. Generates a Match3Actuator at runtime.
/// </summary>
[AddComponentMenu("ML Agents/Match 3 Actuator", (int)MenuGroup.Actuators)]
public class Match3ActuatorComponent : ActuatorComponent
{
/// <summary>

2
com.unity.ml-agents.extensions/Runtime/Match3/Match3SensorComponent.cs


using Unity.MLAgents.Sensors;
using UnityEngine;
namespace Unity.MLAgents.Extensions.Match3
{

[AddComponentMenu("ML Agents/Match 3 Sensor", (int)MenuGroup.Sensors)]
public class Match3SensorComponent : SensorComponent
{
/// <summary>

2
com.unity.ml-agents.extensions/Runtime/Sensors/GridSensor.cs


/// <summary>
/// Grid-based sensor.
/// </summary>
[AddComponentMenu("ML Agents/Grid Sensor", (int)MenuGroup.Sensors)]
public class GridSensor : SensorComponent, ISensor, IBuiltInSensor
{
/// <summary>

{
return BuiltInSensorType.GridSensor;
}
/// <summary>
/// GetCompressedObservation - Calls Perceive then puts the data stored on the perception buffer

2
com.unity.ml-agents.extensions/Tests/Runtime/Input/Unity.ML-Agents.Extensions.Input.Tests.Runtime.asmdef


"versionDefines": [
{
"name": "com.unity.inputsystem",
"expression": "1.1.0-preview",
"expression": "1.1.0",
"define": "MLA_INPUT_TESTS"
}
],

2
com.unity.ml-agents.extensions/package.json


{
"name": "com.unity.ml-agents.extensions",
"displayName": "ML Agents Extensions",
"version": "0.0.1-preview",
"version": "0.1.0-preview",
"unity": "2018.4",
"description": "A source-only package for new features based on ML-Agents",
"dependencies": {

4
com.unity.ml-agents/Documentation~/com.unity.ml-agents.md


[unity ML-Agents Toolkit]: https://github.com/Unity-Technologies/ml-agents
[unity inference engine]: https://docs.unity3d.com/Packages/com.unity.barracuda@latest/index.html
[package manager documentation]: https://docs.unity3d.com/Manual/upm-ui-install.html
[installation instructions]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Installation.md
[installation instructions]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Installation.md
[ML-Agents GitHub repo]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/com.unity.ml-agents.extensions
[ML-Agents GitHub repo]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/com.unity.ml-agents.extensions

4
com.unity.ml-agents/Runtime/Academy.cs


* API. For more information on each of these entities, in addition to how to
* set-up a learning environment and train the behavior of characters in a
* Unity scene, please browse our documentation pages on GitHub:
* https://github.com/Unity-Technologies/ml-agents/tree/release_12_docs/docs/
* https://github.com/Unity-Technologies/ml-agents/tree/release_13_docs/docs/
*/
namespace Unity.MLAgents

/// fall back to inference or heuristic decisions. (You can also set agents to always use
/// inference or heuristics.)
/// </remarks>
[HelpURL("https://github.com/Unity-Technologies/ml-agents/tree/release_12_docs/" +
[HelpURL("https://github.com/Unity-Technologies/ml-agents/tree/release_13_docs/" +
"docs/Learning-Environment-Design.md")]
public class Academy : IDisposable
{

1
com.unity.ml-agents/Runtime/Actuators/ActionSpec.cs


/// <param name="numContinuousActions">The number of continuous actions available.</param>
/// <param name="discreteBranchSizes">The array of branch sizes for the discrete actions. Each index
/// contains the number of actions available for that branch.</param>
/// <returns>An ActionSpec initialized with the specified action sizes.</returns>
public ActionSpec(int numContinuousActions = 0, int[] discreteBranchSizes = null)
{
m_NumContinuousActions = numContinuousActions;

2
com.unity.ml-agents/Runtime/Actuators/IActionReceiver.cs


///
/// See [Agents - Actions] for more information on masking actions.
///
/// [Agents - Actions]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Learning-Environment-Design-Agents.md#actions
/// [Agents - Actions]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Learning-Environment-Design-Agents.md#actions
/// </remarks>
/// <seealso cref="IActionReceiver.OnActionReceived"/>
void WriteDiscreteActionMask(IDiscreteActionMask actionMask);

2
com.unity.ml-agents/Runtime/Actuators/IDiscreteActionMask.cs


///
/// See [Agents - Actions] for more information on masking actions.
///
/// [Agents - Actions]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Learning-Environment-Design-Agents.md#actions
/// [Agents - Actions]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Learning-Environment-Design-Agents.md#actions
/// </remarks>
/// <param name="branch">The branch for which the actions will be masked.</param>
/// <param name="actionIndices">The indices of the masked actions.</param>

8
com.unity.ml-agents/Runtime/Actuators/VectorActuator.cs


/// <summary>
/// IActuator implementation that forwards calls to an <see cref="IActionReceiver"/> and an <see cref="IHeuristicProvider"/>.
/// </summary>
internal class VectorActuator : IActuator, IHeuristicProvider
internal class VectorActuator : IActuator, IHeuristicProvider, IBuiltInActuator
{
IActionReceiver m_ActionReceiver;
IHeuristicProvider m_HeuristicProvider;

/// <inheritdoc />
public string Name { get; }
/// <inheritdoc />
public virtual BuiltInActuatorType GetBuiltInActuatorType()
{
return BuiltInActuatorType.VectorActuator;
}
}
}

47
com.unity.ml-agents/Runtime/Agent.cs


}
/// <summary>
/// Simple wrapper around VectorActuator that overrides GetBuiltInActuatorType
/// so that it can be distinguished from a standard VectorActuator.
/// </summary>
internal class AgentVectorActuator : VectorActuator
{
public AgentVectorActuator(IActionReceiver actionReceiver,
IHeuristicProvider heuristicProvider,
ActionSpec actionSpec,
string name = "VectorActuator"
) : base(actionReceiver, heuristicProvider, actionSpec, name)
{ }
public override BuiltInActuatorType GetBuiltInActuatorType()
{
return BuiltInActuatorType.AgentVectorActuator;
}
}
/// <summary>
/// An agent is an actor that can observe its environment, decide on the
/// best course of action using those observations, and execute those actions
/// within the environment.

/// [OnDisable()]: https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnDisable.html]
/// [OnBeforeSerialize()]: https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnBeforeSerialize.html
/// [OnAfterSerialize()]: https://docs.unity3d.com/ScriptReference/MonoBehaviour.OnAfterSerialize.html
/// [Agents]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Learning-Environment-Design-Agents.md
/// [Reinforcement Learning in Unity]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Learning-Environment-Design.md
/// [Agents]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Learning-Environment-Design-Agents.md
/// [Reinforcement Learning in Unity]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Learning-Environment-Design.md
/// [Unity ML-Agents Toolkit manual]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Readme.md
/// [Unity ML-Agents Toolkit manual]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Readme.md
[HelpURL("https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/" +
[HelpURL("https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/" +
"docs/Learning-Environment-Design-Agents.md")]
[Serializable]
[RequireComponent(typeof(BehaviorParameters))]

/// for information about mixing reward signals from curiosity and Generative Adversarial
/// Imitation Learning (GAIL) with rewards supplied through this method.
///
/// [Agents - Rewards]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Learning-Environment-Design-Agents.md#rewards
/// [Reward Signals]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/ML-Agents-Overview.md#a-quick-note-on-reward-signals
/// [Agents - Rewards]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Learning-Environment-Design-Agents.md#rewards
/// [Reward Signals]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/ML-Agents-Overview.md#a-quick-note-on-reward-signals
/// </remarks>
/// <param name="reward">The new value of the reward.</param>
public void SetReward(float reward)

/// for information about mixing reward signals from curiosity and Generative Adversarial
/// Imitation Learning (GAIL) with rewards supplied through this method.
///
/// [Agents - Rewards]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Learning-Environment-Design-Agents.md#rewards
/// [Reward Signals]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/ML-Agents-Overview.md#a-quick-note-on-reward-signals
/// [Agents - Rewards]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Learning-Environment-Design-Agents.md#rewards
/// [Reward Signals]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/ML-Agents-Overview.md#a-quick-note-on-reward-signals
///</remarks>
/// <param name="increment">Incremental reward value.</param>
public void AddReward(float increment)

/// implementing a simple heuristic function can aid in debugging agent actions and interactions
/// with its environment.
///
/// [Demonstration Recorder]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Learning-Environment-Design-Agents.md#recording-demonstrations
/// [Actions]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Learning-Environment-Design-Agents.md#actions
/// [Demonstration Recorder]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Learning-Environment-Design-Agents.md#recording-demonstrations
/// [Actions]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Learning-Environment-Design-Agents.md#actions
/// [GameObject]: https://docs.unity3d.com/Manual/GameObjects.html
/// </remarks>
/// <example>

// Support legacy OnActionReceived
// TODO don't set this up if the sizes are 0?
var param = m_PolicyFactory.BrainParameters;
m_VectorActuator = new VectorActuator(this, this, param.ActionSpec);
m_VectorActuator = new AgentVectorActuator(this, this, param.ActionSpec);
m_ActuatorManager = new ActuatorManager(attachedActuators.Length + 1);
m_LegacyActionCache = new float[m_VectorActuator.TotalNumberOfActions()];
m_LegacyHeuristicCache = new float[m_VectorActuator.TotalNumberOfActions()];

/// For more information about observations, see [Observations and Sensors].
///
/// [GameObject]: https://docs.unity3d.com/Manual/GameObjects.html
/// [Observations and Sensors]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Learning-Environment-Design-Agents.md#observations-and-sensors
/// [Observations and Sensors]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Learning-Environment-Design-Agents.md#observations-and-sensors
/// </remarks>
public virtual void CollectObservations(VectorSensor sensor)
{

///
/// See [Agents - Actions] for more information on masking actions.
///
/// [Agents - Actions]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Learning-Environment-Design-Agents.md#actions
/// [Agents - Actions]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Learning-Environment-Design-Agents.md#actions
/// </remarks>
/// <seealso cref="IActionReceiver.OnActionReceived"/>
public virtual void WriteDiscreteActionMask(IDiscreteActionMask actionMask)

///
/// For more information about implementing agent actions see [Agents - Actions].
///
/// [Agents - Actions]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Learning-Environment-Design-Agents.md#actions
/// [Agents - Actions]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Learning-Environment-Design-Agents.md#actions
/// </remarks>
/// <param name="actions">
/// Struct containing the buffers of actions to be executed at this step.

31
com.unity.ml-agents/Runtime/Analytics/Events.cs


public int InferenceDevice;
public List<EventObservationSpec> ObservationSpecs;
public EventActionSpec ActionSpec;
public List<EventActuatorInfo> ActuatorInfos;
public int MemorySize;
public long TotalWeightSizeBytes;
public string ModelHash;

NumContinuousActions = actionSpec.NumContinuousActions,
NumDiscreteActions = actionSpec.NumDiscreteActions,
BranchSizes = branchSizes,
};
}
}
/// <summary>
/// Information about an actuator.
/// </summary>
[Serializable]
internal struct EventActuatorInfo
{
public int BuiltInActuatorType;
public int NumContinuousActions;
public int NumDiscreteActions;
public static EventActuatorInfo FromActuator(IActuator actuator)
{
BuiltInActuatorType builtInActuatorType = Actuators.BuiltInActuatorType.Unknown;
if (actuator is IBuiltInActuator builtInActuator)
{
builtInActuatorType = builtInActuator.GetBuiltInActuatorType();
}
var actionSpec = actuator.ActionSpec;
return new EventActuatorInfo
{
BuiltInActuatorType = (int)builtInActuatorType,
NumContinuousActions = actionSpec.NumContinuousActions,
NumDiscreteActions = actionSpec.NumDiscreteActions
};
}
}

public string BehaviorName;
public List<EventObservationSpec> ObservationSpecs;
public EventActionSpec ActionSpec;
public List<EventActuatorInfo> ActuatorInfos;
/// <summary>
/// This will be the same as TrainingEnvironmentInitializedEvent if available, but

18
com.unity.ml-agents/Runtime/Analytics/InferenceAnalytics.cs


/// <param name="inferenceDevice">Whether inference is being performed on the CPU or GPU</param>
/// <param name="sensors">List of ISensors for the Agent. Used to generate information about the observation space.</param>
/// <param name="actionSpec">ActionSpec for the Agent. Used to generate information about the action space.</param>
/// <param name="actuators">List of IActuators for the Agent. Used to generate information about the action space.</param>
/// <returns></returns>
public static void InferenceModelSet(
NNModel nnModel,

ActionSpec actionSpec
ActionSpec actionSpec,
IList<IActuator> actuators
)
{
// The event shouldn't be able to report if this is disabled but if we know we're not going to report

return;
}
var data = GetEventForModel(nnModel, behaviorName, inferenceDevice, sensors, actionSpec);
var data = GetEventForModel(nnModel, behaviorName, inferenceDevice, sensors, actionSpec, actuators);
//Debug.Log(JsonUtility.ToJson(data, true));
// Debug.Log(JsonUtility.ToJson(data, true));
#if UNITY_EDITOR
if (AnalyticsUtils.s_SendEditorAnalytics)
{

/// <param name="inferenceDevice"></param>
/// <param name="sensors"></param>
/// <param name="actionSpec"></param>
/// <param name="actuators"></param>
/// <returns></returns>
internal static InferenceEvent GetEventForModel(
NNModel nnModel,

ActionSpec actionSpec
ActionSpec actionSpec,
IList<IActuator> actuators
)
{
var barracudaModel = ModelLoader.Load(nnModel);

foreach (var sensor in sensors)
{
inferenceEvent.ObservationSpecs.Add(EventObservationSpec.FromSensor(sensor));
}
inferenceEvent.ActuatorInfos = new List<EventActuatorInfo>(actuators.Count);
foreach (var actuator in actuators)
{
inferenceEvent.ActuatorInfos.Add(EventActuatorInfo.FromActuator(actuator));
}
inferenceEvent.TotalWeightSizeBytes = GetModelWeightSize(barracudaModel);

17
com.unity.ml-agents/Runtime/Analytics/TrainingAnalytics.cs


public static void RemotePolicyInitialized(
string fullyQualifiedBehaviorName,
IList<ISensor> sensors,
ActionSpec actionSpec
ActionSpec actionSpec,
IList<IActuator> actuators
)
{
if (!IsAnalyticsEnabled())

return;
}
var data = GetEventForRemotePolicy(behaviorName, sensors, actionSpec);
var data = GetEventForRemotePolicy(behaviorName, sensors, actionSpec, actuators);
// Note - to debug, use JsonUtility.ToJson on the event.
// Debug.Log(
// $"Would send event {k_RemotePolicyInitializedEventName} with body {JsonUtility.ToJson(data, true)}"

#endif
}
static RemotePolicyInitializedEvent GetEventForRemotePolicy(
internal static RemotePolicyInitializedEvent GetEventForRemotePolicy(
ActionSpec actionSpec)
ActionSpec actionSpec,
IList<IActuator> actuators
)
{
var remotePolicyEvent = new RemotePolicyInitializedEvent();

foreach (var sensor in sensors)
{
remotePolicyEvent.ObservationSpecs.Add(EventObservationSpec.FromSensor(sensor));
}
remotePolicyEvent.ActuatorInfos = new List<EventActuatorInfo>(actuators.Count);
foreach (var actuator in actuators)
{
remotePolicyEvent.ActuatorInfos.Add(EventActuatorInfo.FromActuator(actuator));
}
remotePolicyEvent.MLAgentsEnvsVersion = s_TrainerPackageVersion;

9
com.unity.ml-agents/Runtime/Communicator/RpcCommunicator.cs


#if UNITY_EDITOR || UNITY_STANDALONE_WIN || UNITY_STANDALONE_OSX || UNITY_STANDALONE_LINUX
#define MLA_SUPPORTED_TRAINING_PLATFORM
#endif
# if MLA_SUPPORTED_TRAINING_PLATFORM
using Grpc.Core;
#if UNITY_EDITOR
using UnityEditor;

/// <param name="initParametersOut">The External Initialization Parameters received.</param>
public bool Initialize(CommunicatorInitParameters initParameters, out UnityRLInitParameters initParametersOut)
{
#if MLA_SUPPORTED_TRAINING_PLATFORM
var academyParameters = new UnityRLInitializationOutputProto
{
Name = initParameters.name,

UpdateEnvironmentWithInput(input.RlInput);
initParametersOut = initializationInput.RlInitializationInput.ToUnityRLInitParameters();
return true;
#else
initParametersOut = new UnityRLInitParameters();
return false;
#endif
}
/// <summary>

3
com.unity.ml-agents/Runtime/Constants.cs


internal enum MenuGroup
{
Default = 0,
Sensors = 50
Sensors = 50,
Actuators = 100
}
}

2
com.unity.ml-agents/Runtime/Demonstrations/DemonstrationRecorder.cs


/// See [Imitation Learning - Recording Demonstrations] for more information.
///
/// [GameObject]: https://docs.unity3d.com/Manual/GameObjects.html
/// [Imitation Learning - Recording Demonstrations]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs//Learning-Environment-Design-Agents.md#recording-demonstrations
/// [Imitation Learning - Recording Demonstrations]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs//Learning-Environment-Design-Agents.md#recording-demonstrations
/// </remarks>
[RequireComponent(typeof(Agent))]
[AddComponentMenu("ML Agents/Demonstration Recorder", (int)MenuGroup.Default)]

2
com.unity.ml-agents/Runtime/DiscreteActionMasker.cs


///
/// See [Agents - Actions] for more information on masking actions.
///
/// [Agents - Actions]: https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/docs/Learning-Environment-Design-Agents.md#actions
/// [Agents - Actions]: https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/docs/Learning-Environment-Design-Agents.md#actions
/// </remarks>
/// <param name="branch">The branch for which the actions will be masked.</param>
/// <param name="actionIndices">The indices of the masked actions.</param>

10
com.unity.ml-agents/Runtime/Policies/BarracudaPolicy.cs


private string m_BehaviorName;
/// <summary>
/// List of actuators, only used for analytics
/// </summary>
private IList<IActuator> m_Actuators;
/// <summary>
/// Whether or not we've tried to send analytics for this model. We only ever try to send once per policy,
/// and do additional deduplication in the analytics code.
/// </summary>

public BarracudaPolicy(
ActionSpec actionSpec,
IList<IActuator> actuators,
NNModel model,
InferenceDevice inferenceDevice,
string behaviorName

m_ModelRunner = modelRunner;
m_BehaviorName = behaviorName;
m_ActionSpec = actionSpec;
m_Actuators = actuators;
}
/// <inheritdoc />

m_BehaviorName,
m_ModelRunner.InferenceDevice,
sensors,
m_ActionSpec
m_ActionSpec,
m_Actuators
);
}
m_AgentId = info.episodeId;

6
com.unity.ml-agents/Runtime/Policies/BehaviorParameters.cs


"Either assign a model, or change to a different Behavior Type."
);
}
return new BarracudaPolicy(actionSpec, m_Model, m_InferenceDevice, m_BehaviorName);
return new BarracudaPolicy(actionSpec, actuatorManager, m_Model, m_InferenceDevice, m_BehaviorName);
return new RemotePolicy(actionSpec, FullyQualifiedBehaviorName);
return new RemotePolicy(actionSpec, actuatorManager, FullyQualifiedBehaviorName);
return new BarracudaPolicy(actionSpec, m_Model, m_InferenceDevice, m_BehaviorName);
return new BarracudaPolicy(actionSpec, actuatorManager, m_Model, m_InferenceDevice, m_BehaviorName);
}
else
{

10
com.unity.ml-agents/Runtime/Policies/RemotePolicy.cs


internal ICommunicator m_Communicator;
/// <summary>
/// List of actuators, only used for analytics
/// </summary>
private IList<IActuator> m_Actuators;
IList<IActuator> actuators,
string fullyQualifiedBehaviorName)
{
m_FullyQualifiedBehaviorName = fullyQualifiedBehaviorName;

m_Actuators = actuators;
}
/// <inheritdoc />

TrainingAnalytics.RemotePolicyInitialized(
m_FullyQualifiedBehaviorName,
sensors,
m_ActionSpec
m_ActionSpec,
m_Actuators
);
}
m_AgentId = info.episodeId;

38
com.unity.ml-agents/Runtime/Sensors/IBuiltInSensor.cs


/// </summary>
public enum BuiltInSensorType
{
/// <summary>
/// Default Sensor type if it cannot be determined.
/// </summary>
/// <summary>
/// The Vector sensor used by the agent.
/// </summary>
// Note that StackingSensor actually returns the wrapped sensor's type
/// <summary>
/// The Stacking Sensor type. NOTE: StackingSensor actually returns the wrapped sensor's type.
/// </summary>
/// <summary>
/// The RayPerception Sensor types, both 3D and 2D.
/// </summary>
/// <summary>
/// The observable attribute sensor type.
/// </summary>
/// <summary>
/// Sensors that use the Camera for observations.
/// </summary>
/// <summary>
/// Sensors that use RenderTextures for observations.
/// </summary>
/// <summary>
/// Sensors that use buffers or tensors for observations.
/// </summary>
/// <summary>
/// The sensors that observe properties of rigid bodies.
/// </summary>
/// <summary>
/// The sensors that observe Match 3 boards.
/// </summary>
/// <summary>
/// Sensors that break down the world into a grid of colliders to observe an area at a pre-defined granularity.
/// </summary>
GridSensor = 10
}

/// </summary>
public interface IBuiltInSensor
internal interface IBuiltInSensor
{
/// <summary>
/// Return the corresponding BuiltInSensorType for the sensor.

}
}

6
com.unity.ml-agents/Runtime/Sensors/ObservationWriter.cs


}
}
/// <summary>
/// Write the list of floats.
/// </summary>
/// <param name="data">The actual list of floats to write.</param>
/// <param name="writeOffset">Optional write offset to start writing from.</param>
public void AddList(IList<float> data, int writeOffset = 0)
{
if (m_Data != null)

var val = data[index];
m_Data[index + m_Offset + writeOffset] = val;
}
}
else

5
com.unity.ml-agents/Runtime/SideChannels/TrainingAnalyticsSideChannel.cs


namespace Unity.MLAgents.SideChannels
{
public class TrainingAnalyticsSideChannel : SideChannel
/// <summary>
/// Side Channel implementation for recording which training features are being used.
/// </summary>
internal class TrainingAnalyticsSideChannel : SideChannel
{
const string k_TrainingAnalyticsConfigId = "b664a4a9-d86f-5a5f-95cb-e8353a7e8356";

18
com.unity.ml-agents/Tests/Editor/Analytics/InferenceAnalyticsTests.cs


using System;
using System.Collections.Generic;
using NUnit.Framework;
using Unity.MLAgents.Sensors;

{
var sensors = new List<ISensor> { sensor_21_20_3.Sensor, sensor_20_22_3.Sensor };
var behaviorName = "continuousModel";
var actionSpec = GetContinuous2vis8vec2actionActionSpec();
var vectorActuator = new VectorActuator(null, actionSpec, "test'");
var actuators = new IActuator[] { vectorActuator };
InferenceDevice.CPU, sensors, GetContinuous2vis8vec2actionActionSpec()
InferenceDevice.CPU, sensors, actionSpec,
actuators
);
// The behavior name should be hashed, not pass-through.

Assert.AreEqual((int)DimensionProperty.None, continuousEvent.ObservationSpecs[0].DimensionInfos[2].Flags);
Assert.AreEqual("None", continuousEvent.ObservationSpecs[0].CompressionType);
Assert.AreEqual(Test3DSensor.k_BuiltInSensorType, continuousEvent.ObservationSpecs[0].BuiltInSensorType);
Assert.AreEqual((int)BuiltInActuatorType.VectorActuator, continuousEvent.ActuatorInfos[0].BuiltInActuatorType);
Assert.AreNotEqual(null, continuousEvent.ModelHash);
// Make sure nested fields get serialized

Assert.IsTrue(jsonString.Contains("NumDiscreteActions"));
Assert.IsTrue(jsonString.Contains("SensorName"));
Assert.IsTrue(jsonString.Contains("Flags"));
Assert.IsTrue(jsonString.Contains("ActuatorInfos"));
}
[Test]

using (new AnalyticsUtils.DisableAnalyticsSending())
{
var sensors = new List<ISensor> { sensor_21_20_3.Sensor, sensor_20_22_3.Sensor };
var policy = new BarracudaPolicy(GetContinuous2vis8vec2actionActionSpec(), continuousONNXModel, InferenceDevice.CPU, "testBehavior");
var policy = new BarracudaPolicy(
GetContinuous2vis8vec2actionActionSpec(),
Array.Empty<IActuator>(),
continuousONNXModel,
InferenceDevice.CPU,
"testBehavior"
);
policy.RequestDecision(new AgentInfo(), sensors);
}
Academy.Instance.Dispose();

38
com.unity.ml-agents/Tests/Editor/Analytics/TrainingAnalyticsTest.cs


using System;
using UnityEngine;
using Unity.Barracuda;
using UnityEditor;
namespace Unity.MLAgents.Tests.Analytics
{

}
[Test]
public void TestRemotePolicyEvent()
{
var behaviorName = "testBehavior";
var sensor1 = new Test3DSensor("SensorA", 21, 20, 3);
var sensor2 = new Test3DSensor("SensorB", 20, 22, 3);
var sensors = new List<ISensor> { sensor1, sensor2 };
var actionSpec = ActionSpec.MakeContinuous(2);
var vectorActuator = new VectorActuator(null, actionSpec, "test'");
var actuators = new IActuator[] { vectorActuator };
var remotePolicyEvent = TrainingAnalytics.GetEventForRemotePolicy(behaviorName, sensors, actionSpec, actuators);
// The behavior name should be hashed, not pass-through.
Assert.AreNotEqual(behaviorName, remotePolicyEvent.BehaviorName);
Assert.AreEqual(2, remotePolicyEvent.ObservationSpecs.Count);
Assert.AreEqual(3, remotePolicyEvent.ObservationSpecs[0].DimensionInfos.Length);
Assert.AreEqual(20, remotePolicyEvent.ObservationSpecs[0].DimensionInfos[0].Size);
Assert.AreEqual("None", remotePolicyEvent.ObservationSpecs[0].CompressionType);
Assert.AreEqual(Test3DSensor.k_BuiltInSensorType, remotePolicyEvent.ObservationSpecs[0].BuiltInSensorType);
Assert.AreEqual(2, remotePolicyEvent.ActionSpec.NumContinuousActions);
Assert.AreEqual(0, remotePolicyEvent.ActionSpec.NumDiscreteActions);
Assert.AreEqual(2, remotePolicyEvent.ActuatorInfos[0].NumContinuousActions);
Assert.AreEqual(0, remotePolicyEvent.ActuatorInfos[0].NumDiscreteActions);
}
[Test]
public void TestRemotePolicy()
{
if (Academy.IsInitialized)

using (new AnalyticsUtils.DisableAnalyticsSending())
{
var actionSpec = ActionSpec.MakeContinuous(3);
var policy = new RemotePolicy(actionSpec, "TestBehavior?team=42");
var policy = new RemotePolicy(actionSpec, Array.Empty<IActuator>(), "TestBehavior?team=42");
policy.RequestDecision(new AgentInfo(), new List<ISensor>());
}

86
config/ppo/Match3.yaml


default_settings:
trainer_type: ppo
hyperparameters:
batch_size: 16
buffer_size: 120
learning_rate: 0.0003
beta: 0.005
epsilon: 0.2
lambd: 0.99
num_epoch: 3
learning_rate_schedule: constant
network_settings:
normalize: true
hidden_units: 256
num_layers: 4
vis_encode_type: match3
reward_signals:
extrinsic:
gamma: 0.99
strength: 1.0
keep_checkpoints: 5
max_steps: 5000000
time_horizon: 128
summary_freq: 10000
threaded: true
Match3VectorObs:
trainer_type: ppo
hyperparameters:
batch_size: 64
buffer_size: 12000
learning_rate: 0.0003
beta: 0.001
epsilon: 0.2
lambd: 0.99
num_epoch: 3
learning_rate_schedule: constant
network_settings:
normalize: true
hidden_units: 128
num_layers: 2
vis_encode_type: match3
reward_signals:
extrinsic:
gamma: 0.99
strength: 1.0
keep_checkpoints: 5
max_steps: 5000000
time_horizon: 1000
summary_freq: 10000
threaded: true
Match3VisualObs:
trainer_type: ppo
hyperparameters:
batch_size: 64
buffer_size: 12000
learning_rate: 0.0003
beta: 0.001
epsilon: 0.2
lambd: 0.99
num_epoch: 3
learning_rate_schedule: constant
network_settings:
normalize: true
hidden_units: 128
num_layers: 2
vis_encode_type: match3
reward_signals:
extrinsic:
gamma: 0.99
strength: 1.0
keep_checkpoints: 5
max_steps: 5000000
time_horizon: 1000
summary_freq: 10000
threaded: true
batch_size: 64
buffer_size: 128
batch_size: 16
buffer_size: 120
network_settings:
hidden_units: 4
num_layers: 1

Match3GreedyHeuristic:
Match3SmartHeuristic:
batch_size: 64
buffer_size: 128
batch_size: 16
buffer_size: 120
network_settings:
hidden_units: 4
num_layers: 1

1
config/ppo/PyramidsRND.yaml


strength: 0.01
network_settings:
hidden_units: 64
num_layers: 3
learning_rate: 0.0001
keep_checkpoints: 5
max_steps: 3000000

4
docs/Installation-Anaconda-Windows.md


the ml-agents Conda environment by typing `activate ml-agents`)_:
```sh
git clone --branch release_12 https://github.com/Unity-Technologies/ml-agents.git
git clone --branch release_13 https://github.com/Unity-Technologies/ml-agents.git
The `--branch release_12` option will switch to the tag of the latest stable
The `--branch release_13` option will switch to the tag of the latest stable
release. Omitting that will get the `master` branch which is potentially
unstable.

6
docs/Installation.md


of our tutorials / guides assume you have access to our example environments).
```sh
git clone --branch release_12 https://github.com/Unity-Technologies/ml-agents.git
git clone --branch release_13 https://github.com/Unity-Technologies/ml-agents.git
The `--branch release_12` option will switch to the tag of the latest stable
The `--branch release_13` option will switch to the tag of the latest stable
release. Omitting that will get the `master` branch which is potentially
unstable.

ML-Agents Toolkit for your purposes. If you plan to contribute those changes
back, make sure to clone the `master` branch (by omitting `--branch release_12`
back, make sure to clone the `master` branch (by omitting `--branch release_13`
from the command above). See our
[Contributions Guidelines](../com.unity.ml-agents/CONTRIBUTING.md) for more
information on contributing to the ML-Agents Toolkit.

4
docs/Learning-Environment-Examples.md


- Observations and actions are defined with a sensor and actuator respectively.
- Float Properties: None
- Benchmark Mean Reward:
- 37.2 for visual observations
- 37.6 for vector observations
- 39.5 for visual observations
- 38.5 for vector observations
- 34.2 for simple heuristic (pick a random valid move)
- 37.0 for greedy heuristic (pick the highest-scoring valid move)

25
docs/ML-Agents-Overview.md


- [Model Types](#model-types)
- [Learning from Vector Observations](#learning-from-vector-observations)
- [Learning from Cameras using Convolutional Neural Networks](#learning-from-cameras-using-convolutional-neural-networks)
- [Learning from Variable Length Observations using Attention](#learning-from-ariable-length-observations-using-attention)
- [Memory-enhanced Agents using Recurrent Neural Networks](#memory-enhanced-agents-using-recurrent-neural-networks)
- [Additional Features](#additional-features)
- [Summary and Next Steps](#summary-and-next-steps)

Regardless of the training method deployed, there are a few model types that
users can train using the ML-Agents Toolkit. This is due to the flexibility in
defining agent observations, which can include vector, ray cast and visual
defining agent observations, which include vector, ray cast and visual
observations. You can learn more about how to instrument an agent's observation
in the [Designing Agents](Learning-Environment-Design-Agents.md) guide.

The choice of the architecture depends on the visual complexity of the scene and
the available computational resources.
### Learning from Variable Length Observations using Attention
Using the ML-Agents Toolkit, it is possible to have agents learn from a
varying number of inputs. To do so, each agent can keep track of a buffer
of vector observations. At each step, the agent will go through all the
elements in the buffer and extract information but the elements
in the buffer can change at every step.
This can be useful in scenarios in which the agents must keep track of
a varying number of elements throughout the episode. For example in a game
where an agent must learn to avoid projectiles, but the projectiles can vary in
numbers.
![Variable Length Observations Illustrated](images/variable-length-observation-illustrated.png)
You can learn more about variable length observations
[here](Learning-Environment-Design-Agents.md#variable-length-observations).
When variable length observations are utilized, the ML-Agents Toolkit
leverages attention networks to learn from a varying number of entities.
Agents using attention will ignore entities that are deemed not relevant
and pay special attention to entities relevant to the current situation
based on context.
### Memory-enhanced Agents using Recurrent Neural Networks

2
docs/Training-on-Amazon-Web-Service.md


2. Clone the ML-Agents repo and install the required Python packages
```sh
git clone --branch release_12 https://github.com/Unity-Technologies/ml-agents.git
git clone --branch release_13 https://github.com/Unity-Technologies/ml-agents.git
cd ml-agents/ml-agents/
pip3 install -e .
```

4
docs/Unity-Inference-Engine.md


loading expects certain conventions for constants and tensor names. While it is
possible to construct a model that follows these conventions, we don't provide
any additional help for this. More details can be found in
[TensorNames.cs](https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/com.unity.ml-agents/Runtime/Inference/TensorNames.cs)
[TensorNames.cs](https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/com.unity.ml-agents/Runtime/Inference/TensorNames.cs)
[BarracudaModelParamLoader.cs](https://github.com/Unity-Technologies/ml-agents/blob/release_12_docs/com.unity.ml-agents/Runtime/Inference/BarracudaModelParamLoader.cs).
[BarracudaModelParamLoader.cs](https://github.com/Unity-Technologies/ml-agents/blob/release_13_docs/com.unity.ml-agents/Runtime/Inference/BarracudaModelParamLoader.cs).
If you wish to run inference on an externally trained model, you should use
Barracuda directly, instead of trying to run it through ML-Agents.

12
ml-agents/mlagents/trainers/action_info.py


class ActionInfo(NamedTuple):
"""
A NamedTuple containing actions and related quantities to the policy forward
pass. Additionally contains the agent ids in the corresponding DecisionStep
:param action: The action output of the policy
:param env_action: The possibly clipped action to be executed in the environment
:param outputs: Dict of all quantities associated with the policy forward pass
:param agent_ids: List of int agent ids in DecisionStep
"""
value: Any
return ActionInfo([], [], [], {}, [])
return ActionInfo([], [], {}, [])

2
ml-agents/mlagents/trainers/agent_processor.py


if stored_decision_step is not None and stored_take_action_outputs is not None:
obs = stored_decision_step.obs
if self.policy.use_recurrent:
memory = self.policy.retrieve_memories([global_agent_id])[0, :]
memory = self.policy.retrieve_previous_memories([global_agent_id])[0, :]
else:
memory = None
done = terminated # Since this is an ongoing step

1
ml-agents/mlagents/trainers/buffer.py


ENVIRONMENT_REWARDS = "environment_rewards"
MASKS = "masks"
MEMORY = "memory"
CRITIC_MEMORY = "critic_memory"
PREV_ACTION = "prev_action"
ADVANTAGES = "advantages"

140
ml-agents/mlagents/trainers/optimizer/torch_optimizer.py


from typing import Dict, Optional, Tuple, List
from mlagents.torch_utils import torch
import numpy as np
import math
from mlagents.trainers.buffer import AgentBuffer
from mlagents.trainers.buffer import AgentBuffer, AgentBufferField
from mlagents.trainers.trajectory import ObsUtil
from mlagents.trainers.torch.components.bc.module import BCModule
from mlagents.trainers.torch.components.reward_providers import create_reward_provider

self.global_step = torch.tensor(0)
self.bc_module: Optional[BCModule] = None
self.create_reward_signals(trainer_settings.reward_signals)
self.critic_memory_dict: Dict[str, torch.Tensor] = {}
if trainer_settings.behavioral_cloning is not None:
self.bc_module = BCModule(
self.policy,

default_num_epoch=3,
)
@property
def critic(self):
raise NotImplementedError
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
pass

reward_signal, self.policy.behavior_spec, settings
)
def _evaluate_by_sequence(
self, tensor_obs: List[torch.Tensor], initial_memory: np.ndarray
) -> Tuple[Dict[str, torch.Tensor], AgentBufferField, torch.Tensor]:
"""
Evaluate a trajectory sequence-by-sequence, assembling the result. This enables us to get the
intermediate memories for the critic.
:param tensor_obs: A List of tensors of shape (trajectory_len, <obs_dim>) that are the agent's
observations for this trajectory.
:param initial_memory: The memory that preceeds this trajectory. Of shape (1,1,<mem_size>), i.e.
what is returned as the output of a MemoryModules.
:return: A Tuple of the value estimates as a Dict of [name, tensor], an AgentBufferField of the initial
memories to be used during value function update, and the final memory at the end of the trajectory.
"""
num_experiences = tensor_obs[0].shape[0]
all_next_memories = AgentBufferField()
# In the buffer, the 1st sequence are the ones that are padded. So if seq_len = 3 and
# trajectory is of length 10, the 1st sequence is [pad,pad,obs].
# Compute the number of elements in this padded seq.
leftover = num_experiences % self.policy.sequence_length
# Compute values for the potentially truncated initial sequence
seq_obs = []