浏览代码

cleanup port logic in UnityEnvironment (#3673)

/develop/add-fire
GitHub 5 年前
当前提交
5d4f7f08
共有 10 个文件被更改,包括 46 次插入13 次删除
  1. 1
      com.unity.ml-agents/CHANGELOG.md
  2. 2
      docs/Custom-SideChannels.md
  3. 6
      docs/Python-API.md
  4. 2
      gym-unity/gym_unity/envs/__init__.py
  5. 2
      ml-agents-envs/mlagents_envs/communicator.py
  6. 15
      ml-agents-envs/mlagents_envs/environment.py
  7. 3
      ml-agents-envs/mlagents_envs/mock_communicator.py
  8. 3
      ml-agents-envs/mlagents_envs/rpc_communicator.py
  9. 23
      ml-agents-envs/mlagents_envs/tests/test_envs.py
  10. 2
      ml-agents/mlagents/trainers/learn.py

1
com.unity.ml-agents/CHANGELOG.md


- Format of console output has changed slightly and now matches the name of the model/summary directory. (#3630, #3616)
- Raise the wall in CrawlerStatic scene to prevent Agent from falling off. (#3650)
- Renamed 'Generalization' feature to 'Environment Parameter Randomization'.
- The way that UnityEnvironment decides the port was changed. If no port is specified, the behavior will depend on the `file_name` parameter. If it is `None`, 5004 (the editor port) will be used; otherwise 5005 (the base environment port) will be used.
## [0.15.0-preview] - 2020-03-18
### Major Changes

2
docs/Custom-SideChannels.md


string_log = StringLogChannel()
# We start the communication with the Unity Editor and pass the string_log side channel as input
env = UnityEnvironment(base_port=UnityEnvironment.DEFAULT_EDITOR_PORT, side_channels=[string_log])
env = UnityEnvironment(side_channels=[string_log])
env.reset()
string_log.send_string("The environment was reset")

6
docs/Python-API.md


```python
from mlagents_envs.environment import UnityEnvironment
env = UnityEnvironment(file_name="3DBall", base_port=5005, seed=1, side_channels=[])
env = UnityEnvironment(file_name="3DBall", seed=1, side_channels=[])
```
- `file_name` is the name of the environment binary (located in the root

channel = EngineConfigurationChannel()
env = UnityEnvironment(base_port = UnityEnvironment.DEFAULT_EDITOR_PORT, side_channels = [channel])
env = UnityEnvironment(side_channels=[channel])
channel.set_configuration_parameters(time_scale = 2.0)

channel = FloatPropertiesChannel()
env = UnityEnvironment(base_port = UnityEnvironment.DEFAULT_EDITOR_PORT, side_channels = [channel])
env = UnityEnvironment(side_channels=[channel])
channel.set_property("parameter_1", 2.0)

2
gym-unity/gym_unity/envs/__init__.py


:param no_graphics: Whether to run the Unity simulator in no-graphics mode
:param allow_multiple_visual_obs: If True, return a list of visual observations instead of only one.
"""
base_port = 5005
base_port = UnityEnvironment.BASE_ENVIRONMENT_PORT
if environment_filename is None:
base_port = UnityEnvironment.DEFAULT_EDITOR_PORT

2
ml-agents-envs/mlagents_envs/communicator.py


"""
Python side of the communication. Must be used in pair with the right Unity Communicator equivalent.
:int worker_id: Offset from base_port. Used for training multiple environments simultaneously.
:int worker_id: Number to add to communication port (5005) [0]. Used for asynchronous agent scenarios.
"""
def initialize(self, inputs: UnityInputProto) -> UnityOutputProto:

15
ml-agents-envs/mlagents_envs/environment.py


# isn't specified, this port will be used.
DEFAULT_EDITOR_PORT = 5004
# Default base port for environments. Each environment will be offset from this
# by it's worker_id.
BASE_ENVIRONMENT_PORT = 5005
# Command line argument used to pass the port to the executable environment.
PORT_COMMAND_LINE_ARG = "--mlagents-port"

worker_id: int = 0,
base_port: int = 5005,
base_port: Optional[int] = None,
seed: int = 0,
docker_training: bool = False,
no_graphics: bool = False,

:string file_name: Name of Unity environment binary.
:int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this.
:int worker_id: Number to add to communication port (5005) [0]. Used for asynchronous agent scenarios.
If no environment is specified (i.e. file_name is None), the DEFAULT_EDITOR_PORT will be used.
:int worker_id: Offset from base_port. Used for training multiple environments simultaneously.
:bool docker_training: Informs this class whether the process is being run within a container.
:bool no_graphics: Whether to run the Unity simulator in no-graphics mode
:int timeout_wait: Time (in seconds) to wait for connection from environment.

args = args or []
atexit.register(self._close)
# If base port is not specified, use BASE_ENVIRONMENT_PORT if we have
# an environment, otherwise DEFAULT_EDITOR_PORT
if base_port is None:
base_port = (
self.BASE_ENVIRONMENT_PORT if file_name else self.DEFAULT_EDITOR_PORT
)
self.port = base_port + worker_id
self._buffer_size = 12000
# If true, this means the environment was successfully loaded

3
ml-agents-envs/mlagents_envs/mock_communicator.py


):
"""
Python side of the grpc communication. Python is the client and Unity the server
:int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this.
:int worker_id: Number to add to communication port (5005) [0]. Used for asynchronous agent scenarios.
"""
super().__init__()
self.is_discrete = discrete_action

3
ml-agents-envs/mlagents_envs/rpc_communicator.py


:int base_port: Baseline port number to connect to Unity environment over. worker_id increments over this.
:int worker_id: Number to add to communication port (5005) [0]. Used for asynchronous agent scenarios.
:int worker_id: Offset from base_port. Used for training multiple environments simultaneously.
:int timeout_wait: Timeout (in seconds) to wait for a response before exiting.
"""
super().__init__(worker_id, base_port)
self.port = base_port + worker_id

23
ml-agents-envs/mlagents_envs/tests/test_envs.py


env.close()
@pytest.mark.parametrize(
"base_port,file_name,expected",
[
# Non-None base port value will always be used
(6001, "foo.exe", 6001),
# No port specified and environment specified, so use BASE_ENVIRONMENT_PORT
(None, "foo.exe", UnityEnvironment.BASE_ENVIRONMENT_PORT),
# No port specified and no environment, so use DEFAULT_EDITOR_PORT
(None, None, UnityEnvironment.DEFAULT_EDITOR_PORT),
],
)
@mock.patch("mlagents_envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents_envs.environment.UnityEnvironment.get_communicator")
def test_port_defaults(
mock_communicator, mock_launcher, base_port, file_name, expected
):
mock_communicator.return_value = MockCommunicator(
discrete_action=False, visual_inputs=0
)
env = UnityEnvironment(file_name=file_name, worker_id=0, base_port=base_port)
assert expected == env.port
@mock.patch("mlagents_envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents_envs.environment.UnityEnvironment.get_communicator")
def test_reset(mock_communicator, mock_launcher):

2
ml-agents/mlagents/trainers/learn.py


)
argparser.add_argument(
"--base-port",
default=5005,
default=UnityEnvironment.BASE_ENVIRONMENT_PORT,
type=int,
help="Base port for environment communication",
)

正在加载...
取消
保存