浏览代码

Rename mlagents.envs to mlagents_envs (#3083)

/asymm-envs
GitHub 5 年前
当前提交
58b6c7c2
共有 132 个文件被更改,包括 453 次插入455 次删除
  1. 2
      .circleci/config.yml
  2. 6
      .pre-commit-config.yaml
  3. 6
      .pylintrc
  4. 8
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/AgentAction.cs
  5. 10
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/AgentInfo.cs
  6. 12
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/AgentInfoActionPair.cs
  7. 10
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/BrainParameters.cs
  8. 8
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/Command.cs
  9. 8
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/CustomResetParameters.cs
  10. 8
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/DemonstrationMeta.cs
  11. 8
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/EngineConfiguration.cs
  12. 8
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/Header.cs
  13. 8
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/Observation.cs
  14. 8
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/SpaceType.cs
  15. 12
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityInput.cs
  16. 14
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityMessage.cs
  17. 12
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityOutput.cs
  18. 8
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityRlInitializationInput.cs
  19. 10
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityRlInitializationOutput.cs
  20. 12
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityRlInput.cs
  21. 10
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityRlOutput.cs
  22. 10
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityToExternal.cs
  23. 2
      UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityToExternalGrpc.cs
  24. 6
      docs/Basic-Guide.md
  25. 8
      docs/Learning-Environment-Executable.md
  26. 10
      docs/Migrating.md
  27. 18
      docs/Python-API.md
  28. 2
      docs/Training-Generalized-Reinforcement-Learning-Agents.md
  29. 10
      docs/Training-on-Amazon-Web-Service.md
  30. 2
      docs/Training-on-Microsoft-Azure.md
  31. 2
      gym-unity/gym_unity/envs/__init__.py
  32. 2
      gym-unity/gym_unity/tests/test_gym.py
  33. 2
      ml-agents-envs/README.md
  34. 8
      ml-agents-envs/setup.py
  35. 2
      ml-agents/README.md
  36. 10
      ml-agents/mlagents/trainers/brain.py
  37. 4
      ml-agents/mlagents/trainers/brain_conversion_utils.py
  38. 2
      ml-agents/mlagents/trainers/buffer.py
  39. 8
      ml-agents/mlagents/trainers/demo_loader.py
  40. 14
      ml-agents/mlagents/trainers/learn.py
  41. 2
      ml-agents/mlagents/trainers/ppo/multi_gpu_policy.py
  42. 2
      ml-agents/mlagents/trainers/ppo/policy.py
  43. 2
      ml-agents/mlagents/trainers/sac/policy.py
  44. 2
      ml-agents/mlagents/trainers/sac/trainer.py
  45. 6
      ml-agents/mlagents/trainers/simple_env_manager.py
  46. 16
      ml-agents/mlagents/trainers/subprocess_env_manager.py
  47. 12
      ml-agents/mlagents/trainers/tests/test_bcmodule.py
  48. 14
      ml-agents/mlagents/trainers/tests/test_ppo.py
  49. 16
      ml-agents/mlagents/trainers/tests/test_reward_signals.py
  50. 10
      ml-agents/mlagents/trainers/tests/test_sac.py
  51. 4
      ml-agents/mlagents/trainers/tests/test_simple_rl.py
  52. 4
      ml-agents/mlagents/trainers/tests/test_subprocess_env_manager.py
  53. 2
      ml-agents/mlagents/trainers/tf_policy.py
  54. 6
      ml-agents/mlagents/trainers/trainer.py
  55. 6
      ml-agents/mlagents/trainers/trainer_controller.py
  56. 6
      ml-agents/setup.py
  57. 4
      notebooks/getting-started.ipynb
  58. 12
      protobuf-definitions/make.sh
  59. 8
      protobuf-definitions/make_for_win.bat
  60. 2
      utils/validate_versions.py
  61. 6
      ml-agents-envs/mlagents_envs/communicator.py
  62. 26
      ml-agents-envs/mlagents_envs/environment.py
  63. 2
      ml-agents-envs/mlagents_envs/exception.py
  64. 16
      ml-agents-envs/mlagents_envs/mock_communicator.py
  65. 10
      ml-agents-envs/mlagents_envs/rpc_communicator.py
  66. 10
      ml-agents-envs/mlagents_envs/rpc_utils.py
  67. 4
      ml-agents-envs/mlagents_envs/tests/test_rpc_communicator.py
  68. 10
      ml-agents-envs/mlagents_envs/tests/test_rpc_utils.py
  69. 8
      ml-agents-envs/mlagents_envs/tests/test_side_channel.py
  70. 4
      ml-agents-envs/mlagents_envs/tests/test_timers.py
  71. 26
      ml-agents-envs/mlagents_envs/tests/test_envs.py
  72. 4
      ml-agents-envs/mlagents_envs/side_channel/engine_configuration_channel.py
  73. 2
      ml-agents-envs/mlagents_envs/side_channel/float_properties_channel.py
  74. 2
      ml-agents-envs/mlagents_envs/side_channel/raw_bytes_channel.py
  75. 8
      ml-agents-envs/mlagents_envs/communicator_objects/agent_action_pb2.py
  76. 14
      ml-agents-envs/mlagents_envs/communicator_objects/agent_info_pb2.py
  77. 8
      ml-agents-envs/mlagents_envs/communicator_objects/agent_info_pb2.pyi
  78. 14
      ml-agents-envs/mlagents_envs/communicator_objects/brain_parameters_pb2.py
  79. 8
      ml-agents-envs/mlagents_envs/communicator_objects/brain_parameters_pb2.pyi
  80. 6
      ml-agents-envs/mlagents_envs/communicator_objects/command_pb2.py
  81. 8
      ml-agents-envs/mlagents_envs/communicator_objects/custom_reset_parameters_pb2.py
  82. 8
      ml-agents-envs/mlagents_envs/communicator_objects/demonstration_meta_pb2.py
  83. 8
      ml-agents-envs/mlagents_envs/communicator_objects/engine_configuration_pb2.py
  84. 8
      ml-agents-envs/mlagents_envs/communicator_objects/header_pb2.py
  85. 10
      ml-agents-envs/mlagents_envs/communicator_objects/observation_pb2.py
  86. 6
      ml-agents-envs/mlagents_envs/communicator_objects/space_type_pb2.py
  87. 8
      ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_initialization_input_pb2.py
  88. 14
      ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_initialization_output_pb2.py
  89. 8
      ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_initialization_output_pb2.pyi
  90. 22
      ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_input_pb2.py
  91. 16
      ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_input_pb2.pyi
  92. 18
      ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_output_pb2.py
  93. 8
      ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_output_pb2.pyi
  94. 18
      ml-agents-envs/mlagents_envs/communicator_objects/agent_info_action_pair_pb2.py
  95. 16
      ml-agents-envs/mlagents_envs/communicator_objects/agent_info_action_pair_pb2.pyi
  96. 18
      ml-agents-envs/mlagents_envs/communicator_objects/unity_input_pb2.py
  97. 16
      ml-agents-envs/mlagents_envs/communicator_objects/unity_input_pb2.pyi
  98. 22
      ml-agents-envs/mlagents_envs/communicator_objects/unity_message_pb2.py
  99. 24
      ml-agents-envs/mlagents_envs/communicator_objects/unity_message_pb2.pyi
  100. 18
      ml-agents-envs/mlagents_envs/communicator_objects/unity_output_pb2.py

2
.circleci/config.yml


- checkout
- run:
name: Combine proto files for caching
command: cat protobuf-definitions/proto/mlagents/envs/communicator_objects/*.proto > /tmp/proto_deps.txt
command: cat protobuf-definitions/proto/mlagents_envs/communicator_objects/*.proto > /tmp/proto_deps.txt
- restore_cache:
keys:

6
.pre-commit-config.yaml


- id: mypy
name: mypy-ml-agents
files: "ml-agents/.*"
args: [--ignore-missing-imports, --disallow-incomplete-defs, --namespace-packages]
args: [--ignore-missing-imports, --disallow-incomplete-defs]
args: [--ignore-missing-imports, --disallow-incomplete-defs, --namespace-packages]
args: [--ignore-missing-imports, --disallow-incomplete-defs]
args: [--ignore-missing-imports, --disallow-incomplete-defs, --namespace-packages]
args: [--ignore-missing-imports, --disallow-incomplete-defs]
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v2.4.0

6
.pylintrc


# W0703: Catching too general exception Exception
W0703,
# E0401: Unable to import...
# E0611: No name '...' in module '...'
# need to look into these, probably namespace packages
E0401, E0611,
# E0401: Unable to import... - triggers for external dependencies like numpy
E0401,
# This was causing false positives
# Appears to be https://github.com/PyCQA/pylint/issues/2981

8
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/AgentAction.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/agent_action.proto
// source: mlagents_envs/communicator_objects/agent_action.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/agent_action.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/agent_action.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/agent_action.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/agent_action.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CjVtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2FnZW50X2Fj",
"CjVtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2FnZW50X2Fj",
"dGlvbi5wcm90bxIUY29tbXVuaWNhdG9yX29iamVjdHMiSwoQQWdlbnRBY3Rp",
"b25Qcm90bxIWCg52ZWN0b3JfYWN0aW9ucxgBIAMoAhINCgV2YWx1ZRgEIAEo",
"AkoECAIQA0oECAMQBEoECAUQBkIfqgIcTUxBZ2VudHMuQ29tbXVuaWNhdG9y",

10
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/AgentInfo.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/agent_info.proto
// source: mlagents_envs/communicator_objects/agent_info.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/agent_info.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/agent_info.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/agent_info.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/agent_info.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CjNtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2FnZW50X2lu",
"Zm8ucHJvdG8SFGNvbW11bmljYXRvcl9vYmplY3RzGjRtbGFnZW50cy9lbnZz",
"CjNtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2FnZW50X2lu",
"Zm8ucHJvdG8SFGNvbW11bmljYXRvcl9vYmplY3RzGjRtbGFnZW50c19lbnZz",
"L2NvbW11bmljYXRvcl9vYmplY3RzL29ic2VydmF0aW9uLnByb3RvItEBCg5B",
"Z2VudEluZm9Qcm90bxIOCgZyZXdhcmQYByABKAISDAoEZG9uZRgIIAEoCBIY",
"ChBtYXhfc3RlcF9yZWFjaGVkGAkgASgIEgoKAmlkGAogASgFEhMKC2FjdGlv",

12
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/AgentInfoActionPair.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/agent_info_action_pair.proto
// source: mlagents_envs/communicator_objects/agent_info_action_pair.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/agent_info_action_pair.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/agent_info_action_pair.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/agent_info_action_pair.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/agent_info_action_pair.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"Cj9tbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2FnZW50X2lu",
"Cj9tbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2FnZW50X2lu",
"bGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2FnZW50X2luZm8u",
"cHJvdG8aNW1sYWdlbnRzL2VudnMvY29tbXVuaWNhdG9yX29iamVjdHMvYWdl",
"bGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2FnZW50X2luZm8u",
"cHJvdG8aNW1sYWdlbnRzX2VudnMvY29tbXVuaWNhdG9yX29iamVjdHMvYWdl",
"bnRfYWN0aW9uLnByb3RvIpEBChhBZ2VudEluZm9BY3Rpb25QYWlyUHJvdG8S",
"OAoKYWdlbnRfaW5mbxgBIAEoCzIkLmNvbW11bmljYXRvcl9vYmplY3RzLkFn",
"ZW50SW5mb1Byb3RvEjsKC2FjdGlvbl9pbmZvGAIgASgLMiYuY29tbXVuaWNh",

10
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/BrainParameters.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/brain_parameters.proto
// source: mlagents_envs/communicator_objects/brain_parameters.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/brain_parameters.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/brain_parameters.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/brain_parameters.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/brain_parameters.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CjltbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2JyYWluX3Bh",
"CjltbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2JyYWluX3Bh",
"cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3NwYWNlX3R5cGUucHJvdG8i",
"c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3NwYWNlX3R5cGUucHJvdG8i",
"2QEKFEJyYWluUGFyYW1ldGVyc1Byb3RvEhoKEnZlY3Rvcl9hY3Rpb25fc2l6",
"ZRgDIAMoBRIiChp2ZWN0b3JfYWN0aW9uX2Rlc2NyaXB0aW9ucxgFIAMoCRJG",
"Chh2ZWN0b3JfYWN0aW9uX3NwYWNlX3R5cGUYBiABKA4yJC5jb21tdW5pY2F0",

8
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/Command.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/command.proto
// source: mlagents_envs/communicator_objects/command.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/command.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/command.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/command.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/command.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CjBtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2NvbW1hbmQu",
"CjBtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2NvbW1hbmQu",
"cHJvdG8SFGNvbW11bmljYXRvcl9vYmplY3RzKi0KDENvbW1hbmRQcm90bxII",
"CgRTVEVQEAASCQoFUkVTRVQQARIICgRRVUlUEAJCH6oCHE1MQWdlbnRzLkNv",
"bW11bmljYXRvck9iamVjdHNiBnByb3RvMw=="));

8
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/CustomResetParameters.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/custom_reset_parameters.proto
// source: mlagents_envs/communicator_objects/custom_reset_parameters.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/custom_reset_parameters.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/custom_reset_parameters.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/custom_reset_parameters.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/custom_reset_parameters.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CkBtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2N1c3RvbV9y",
"CkBtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2N1c3RvbV9y",
"ZXNldF9wYXJhbWV0ZXJzLnByb3RvEhRjb21tdW5pY2F0b3Jfb2JqZWN0cyIc",
"ChpDdXN0b21SZXNldFBhcmFtZXRlcnNQcm90b0IfqgIcTUxBZ2VudHMuQ29t",
"bXVuaWNhdG9yT2JqZWN0c2IGcHJvdG8z"));

8
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/DemonstrationMeta.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/demonstration_meta.proto
// source: mlagents_envs/communicator_objects/demonstration_meta.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/demonstration_meta.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/demonstration_meta.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/demonstration_meta.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/demonstration_meta.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CjttbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2RlbW9uc3Ry",
"CjttbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2RlbW9uc3Ry",
"YXRpb25fbWV0YS5wcm90bxIUY29tbXVuaWNhdG9yX29iamVjdHMijQEKFkRl",
"bW9uc3RyYXRpb25NZXRhUHJvdG8SEwoLYXBpX3ZlcnNpb24YASABKAUSGgoS",
"ZGVtb25zdHJhdGlvbl9uYW1lGAIgASgJEhQKDG51bWJlcl9zdGVwcxgDIAEo",

8
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/EngineConfiguration.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/engine_configuration.proto
// source: mlagents_envs/communicator_objects/engine_configuration.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/engine_configuration.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/engine_configuration.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/engine_configuration.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/engine_configuration.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"Cj1tbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2VuZ2luZV9j",
"Cj1tbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2VuZ2luZV9j",
"b25maWd1cmF0aW9uLnByb3RvEhRjb21tdW5pY2F0b3Jfb2JqZWN0cyKVAQoY",
"RW5naW5lQ29uZmlndXJhdGlvblByb3RvEg0KBXdpZHRoGAEgASgFEg4KBmhl",
"aWdodBgCIAEoBRIVCg1xdWFsaXR5X2xldmVsGAMgASgFEhIKCnRpbWVfc2Nh",

8
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/Header.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/header.proto
// source: mlagents_envs/communicator_objects/header.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/header.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/header.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/header.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/header.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"Ci9tbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2hlYWRlci5w",
"Ci9tbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2hlYWRlci5w",
"cm90bxIUY29tbXVuaWNhdG9yX29iamVjdHMiLgoLSGVhZGVyUHJvdG8SDgoG",
"c3RhdHVzGAEgASgFEg8KB21lc3NhZ2UYAiABKAlCH6oCHE1MQWdlbnRzLkNv",
"bW11bmljYXRvck9iamVjdHNiBnByb3RvMw=="));

8
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/Observation.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/observation.proto
// source: mlagents_envs/communicator_objects/observation.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/observation.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/observation.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/observation.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/observation.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CjRtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL29ic2VydmF0",
"CjRtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL29ic2VydmF0",
"aW9uLnByb3RvEhRjb21tdW5pY2F0b3Jfb2JqZWN0cyL5AQoQT2JzZXJ2YXRp",
"b25Qcm90bxINCgVzaGFwZRgBIAMoBRJEChBjb21wcmVzc2lvbl90eXBlGAIg",
"ASgOMiouY29tbXVuaWNhdG9yX29iamVjdHMuQ29tcHJlc3Npb25UeXBlUHJv",

8
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/SpaceType.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/space_type.proto
// source: mlagents_envs/communicator_objects/space_type.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/space_type.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/space_type.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/space_type.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/space_type.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CjNtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3NwYWNlX3R5",
"CjNtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3NwYWNlX3R5",
"cGUucHJvdG8SFGNvbW11bmljYXRvcl9vYmplY3RzKi4KDlNwYWNlVHlwZVBy",
"b3RvEgwKCGRpc2NyZXRlEAASDgoKY29udGludW91cxABQh+qAhxNTEFnZW50",
"cy5Db21tdW5pY2F0b3JPYmplY3RzYgZwcm90bzM="));

12
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityInput.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/unity_input.proto
// source: mlagents_envs/communicator_objects/unity_input.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/unity_input.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/unity_input.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/unity_input.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/unity_input.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CjRtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X2lu",
"cHV0LnByb3RvEhRjb21tdW5pY2F0b3Jfb2JqZWN0cxo3bWxhZ2VudHMvZW52",
"CjRtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X2lu",
"cHV0LnByb3RvEhRjb21tdW5pY2F0b3Jfb2JqZWN0cxo3bWxhZ2VudHNfZW52",
"bWxhZ2VudHMvZW52cy9jb21tdW5pY2F0b3Jfb2JqZWN0cy91bml0eV9ybF9p",
"bWxhZ2VudHNfZW52cy9jb21tdW5pY2F0b3Jfb2JqZWN0cy91bml0eV9ybF9p",
"bml0aWFsaXphdGlvbl9pbnB1dC5wcm90byKkAQoPVW5pdHlJbnB1dFByb3Rv",
"EjkKCHJsX2lucHV0GAEgASgLMicuY29tbXVuaWNhdG9yX29iamVjdHMuVW5p",
"dHlSTElucHV0UHJvdG8SVgoXcmxfaW5pdGlhbGl6YXRpb25faW5wdXQYAiAB",

14
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityMessage.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/unity_message.proto
// source: mlagents_envs/communicator_objects/unity_message.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/unity_message.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/unity_message.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/unity_message.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/unity_message.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CjZtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X21l",
"c3NhZ2UucHJvdG8SFGNvbW11bmljYXRvcl9vYmplY3RzGjVtbGFnZW50cy9l",
"CjZtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X21l",
"c3NhZ2UucHJvdG8SFGNvbW11bmljYXRvcl9vYmplY3RzGjVtbGFnZW50c19l",
"bWxhZ2VudHMvZW52cy9jb21tdW5pY2F0b3Jfb2JqZWN0cy91bml0eV9pbnB1",
"dC5wcm90bxovbWxhZ2VudHMvZW52cy9jb21tdW5pY2F0b3Jfb2JqZWN0cy9o",
"bWxhZ2VudHNfZW52cy9jb21tdW5pY2F0b3Jfb2JqZWN0cy91bml0eV9pbnB1",
"dC5wcm90bxovbWxhZ2VudHNfZW52cy9jb21tdW5pY2F0b3Jfb2JqZWN0cy9o",
"ZWFkZXIucHJvdG8iwAEKEVVuaXR5TWVzc2FnZVByb3RvEjEKBmhlYWRlchgB",
"IAEoCzIhLmNvbW11bmljYXRvcl9vYmplY3RzLkhlYWRlclByb3RvEjwKDHVu",
"aXR5X291dHB1dBgCIAEoCzImLmNvbW11bmljYXRvcl9vYmplY3RzLlVuaXR5",

12
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityOutput.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/unity_output.proto
// source: mlagents_envs/communicator_objects/unity_output.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/unity_output.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/unity_output.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/unity_output.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/unity_output.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CjVtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X291",
"dHB1dC5wcm90bxIUY29tbXVuaWNhdG9yX29iamVjdHMaOG1sYWdlbnRzL2Vu",
"CjVtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X291",
"dHB1dC5wcm90bxIUY29tbXVuaWNhdG9yX29iamVjdHMaOG1sYWdlbnRzX2Vu",
"GkdtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X3Js",
"GkdtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X3Js",
"X2luaXRpYWxpemF0aW9uX291dHB1dC5wcm90byKpAQoQVW5pdHlPdXRwdXRQ",
"cm90bxI7CglybF9vdXRwdXQYASABKAsyKC5jb21tdW5pY2F0b3Jfb2JqZWN0",
"cy5Vbml0eVJMT3V0cHV0UHJvdG8SWAoYcmxfaW5pdGlhbGl6YXRpb25fb3V0",

8
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityRlInitializationInput.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/unity_rl_initialization_input.proto
// source: mlagents_envs/communicator_objects/unity_rl_initialization_input.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/unity_rl_initialization_input.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/unity_rl_initialization_input.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/unity_rl_initialization_input.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/unity_rl_initialization_input.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CkZtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X3Js",
"CkZtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X3Js",
"X2luaXRpYWxpemF0aW9uX2lucHV0LnByb3RvEhRjb21tdW5pY2F0b3Jfb2Jq",
"ZWN0cyIvCh9Vbml0eVJMSW5pdGlhbGl6YXRpb25JbnB1dFByb3RvEgwKBHNl",
"ZWQYASABKAVCH6oCHE1MQWdlbnRzLkNvbW11bmljYXRvck9iamVjdHNiBnBy",

10
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityRlInitializationOutput.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/unity_rl_initialization_output.proto
// source: mlagents_envs/communicator_objects/unity_rl_initialization_output.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/unity_rl_initialization_output.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/unity_rl_initialization_output.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/unity_rl_initialization_output.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/unity_rl_initialization_output.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CkdtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X3Js",
"CkdtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X3Js",
"amVjdHMaOW1sYWdlbnRzL2VudnMvY29tbXVuaWNhdG9yX29iamVjdHMvYnJh",
"amVjdHMaOW1sYWdlbnRzX2VudnMvY29tbXVuaWNhdG9yX29iamVjdHMvYnJh",
"aW5fcGFyYW1ldGVycy5wcm90byKfAQogVW5pdHlSTEluaXRpYWxpemF0aW9u",
"T3V0cHV0UHJvdG8SDAoEbmFtZRgBIAEoCRIPCgd2ZXJzaW9uGAIgASgJEhAK",
"CGxvZ19wYXRoGAMgASgJEkQKEGJyYWluX3BhcmFtZXRlcnMYBSADKAsyKi5j",

12
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityRlInput.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/unity_rl_input.proto
// source: mlagents_envs/communicator_objects/unity_rl_input.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/unity_rl_input.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/unity_rl_input.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/unity_rl_input.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/unity_rl_input.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CjdtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X3Js",
"X2lucHV0LnByb3RvEhRjb21tdW5pY2F0b3Jfb2JqZWN0cxo1bWxhZ2VudHMv",
"CjdtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X3Js",
"X2lucHV0LnByb3RvEhRjb21tdW5pY2F0b3Jfb2JqZWN0cxo1bWxhZ2VudHNf",
"MG1sYWdlbnRzL2VudnMvY29tbXVuaWNhdG9yX29iamVjdHMvY29tbWFuZC5w",
"MG1sYWdlbnRzX2VudnMvY29tbXVuaWNhdG9yX29iamVjdHMvY29tbWFuZC5w",
"cm90byL+AgoRVW5pdHlSTElucHV0UHJvdG8SUAoNYWdlbnRfYWN0aW9ucxgB",
"IAMoCzI5LmNvbW11bmljYXRvcl9vYmplY3RzLlVuaXR5UkxJbnB1dFByb3Rv",
"LkFnZW50QWN0aW9uc0VudHJ5EjMKB2NvbW1hbmQYBCABKA4yIi5jb21tdW5p",

10
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityRlOutput.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/unity_rl_output.proto
// source: mlagents_envs/communicator_objects/unity_rl_output.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/unity_rl_output.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/unity_rl_output.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/unity_rl_output.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/unity_rl_output.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CjhtbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X3Js",
"CjhtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X3Js",
"L2VudnMvY29tbXVuaWNhdG9yX29iamVjdHMvYWdlbnRfaW5mby5wcm90byK5",
"X2VudnMvY29tbXVuaWNhdG9yX29iamVjdHMvYWdlbnRfaW5mby5wcm90byK5",
"AgoSVW5pdHlSTE91dHB1dFByb3RvEkwKCmFnZW50SW5mb3MYAiADKAsyOC5j",
"b21tdW5pY2F0b3Jfb2JqZWN0cy5Vbml0eVJMT3V0cHV0UHJvdG8uQWdlbnRJ",
"bmZvc0VudHJ5EhQKDHNpZGVfY2hhbm5lbBgDIAEoDBpJChJMaXN0QWdlbnRJ",

10
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityToExternal.cs


// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/unity_to_external.proto
// source: mlagents_envs/communicator_objects/unity_to_external.proto
// </auto-generated>
#pragma warning disable 1591, 0612, 3021
#region Designer generated code

using scg = global::System.Collections.Generic;
namespace MLAgents.CommunicatorObjects {
/// <summary>Holder for reflection information generated from mlagents/envs/communicator_objects/unity_to_external.proto</summary>
/// <summary>Holder for reflection information generated from mlagents_envs/communicator_objects/unity_to_external.proto</summary>
/// <summary>File descriptor for mlagents/envs/communicator_objects/unity_to_external.proto</summary>
/// <summary>File descriptor for mlagents_envs/communicator_objects/unity_to_external.proto</summary>
public static pbr::FileDescriptor Descriptor {
get { return descriptor; }
}

byte[] descriptorData = global::System.Convert.FromBase64String(
string.Concat(
"CjptbGFnZW50cy9lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X3Rv",
"CjptbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL3VuaXR5X3Rv",
"dHMvZW52cy9jb21tdW5pY2F0b3Jfb2JqZWN0cy91bml0eV9tZXNzYWdlLnBy",
"dHNfZW52cy9jb21tdW5pY2F0b3Jfb2JqZWN0cy91bml0eV9tZXNzYWdlLnBy",
"b3RvMnYKFFVuaXR5VG9FeHRlcm5hbFByb3RvEl4KCEV4Y2hhbmdlEicuY29t",
"bXVuaWNhdG9yX29iamVjdHMuVW5pdHlNZXNzYWdlUHJvdG8aJy5jb21tdW5p",
"Y2F0b3Jfb2JqZWN0cy5Vbml0eU1lc3NhZ2VQcm90byIAQh+qAhxNTEFnZW50",

2
UnitySDK/Assets/ML-Agents/Scripts/Grpc/CommunicatorObjects/UnityToExternalGrpc.cs


#if UNITY_EDITOR || UNITY_STANDALONE_WIN || UNITY_STANDALONE_OSX || UNITY_STANDALONE_LINUX
// <auto-generated>
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: mlagents/envs/communicator_objects/unity_to_external.proto
// source: mlagents_envs/communicator_objects/unity_to_external.proto
// </auto-generated>
#pragma warning disable 0414, 1591
#region Designer generated code

6
docs/Basic-Guide.md


like this:
```console
INFO:mlagents.envs:
INFO:mlagents_envs:
INFO:mlagents.envs:Connected new brain:
INFO:mlagents_envs:Connected new brain:
Unity brain name: 3DBallLearning
Number of Visual Observations (per agent): 0
Vector Observation space size (per agent): 8

Vector Action descriptions: ,
INFO:mlagents.envs:Hyperparameters for the PPO Trainer of brain 3DBallLearning:
INFO:mlagents_envs:Hyperparameters for the PPO Trainer of brain 3DBallLearning:
batch_size: 64
beta: 0.001
buffer_size: 12000

8
docs/Learning-Environment-Executable.md


'file_name' of the `UnityEnvironment`. For instance:
```python
from mlagents.envs.environment import UnityEnvironment
from mlagents_envs.environment import UnityEnvironment
env = UnityEnvironment(file_name=<env_name>)
```

CrashReporter: initialized
Mono path[0] = '/Users/dericp/workspace/ml-agents/3DBall.app/Contents/Resources/Data/Managed'
Mono config path = '/Users/dericp/workspace/ml-agents/3DBall.app/Contents/MonoBleedingEdge/etc'
INFO:mlagents.envs:
INFO:mlagents_envs:
INFO:mlagents.envs:Connected new brain:
INFO:mlagents_envs:Connected new brain:
Unity brain name: Ball3DLearning
Number of Visual Observations (per agent): 0
Vector Observation space size (per agent): 8

Vector Action descriptions: ,
INFO:mlagents.envs:Hyperparameters for the PPO Trainer of brain Ball3DLearning:
INFO:mlagents_envs:Hyperparameters for the PPO Trainer of brain Ball3DLearning:
batch_size: 64
beta: 0.001
buffer_size: 12000

10
docs/Migrating.md


# Migrating
## Migrating from master to develop
## Migrating from 0.12 to latest
* `reset()` on the Low-Level Python API no longer takes a `train_mode` argument. To modify the performance/speed of the engine, you must use an `EngineConfigurationChannel`
* `reset()` on the Low-Level Python API no longer takes a `config` argument. `UnityEnvironment` no longer has a `reset_parameters` field. To modify float properties in the environment, you must use a `FloatPropertiesChannel`. For more information, refer to the [Low Level Python API documentation](Python-API.md)
* `reset()` on the Low-Level Python API no longer takes a `train_mode` argument. To modify the performance/speed of the engine, you must use an `EngineConfigurationChannel`
* `reset()` on the Low-Level Python API no longer takes a `config` argument. `UnityEnvironment` no longer has a `reset_parameters` field. To modify float properties in the environment, you must use a `FloatPropertiesChannel`. For more information, refer to the [Low Level Python API documentation](Python-API.md)
* `mlagents.envs` was renamed to `mlagents_envs`. The previous repo layout depended on [PEP420](https://www.python.org/dev/peps/pep-0420/), which caused problems with some of our tooling such as mypy and pylint.
* Any imports from `mlagents.envs` should be replaced with `mlagents_envs`.
## Migrating from ML-Agents toolkit v0.11.0 to v0.12.0

* `UnitySDK/Assets/ML-Agents/Scripts/Communicator.cs` and its class `Communicator` have been renamed to `UnitySDK/Assets/ML-Agents/Scripts/ICommunicator.cs` and `ICommunicator` respectively.
* The `SpaceType` Enums `discrete`, and `continuous` have been renamed to `Discrete` and `Continuous`.
* We have removed the `Done` call as well as the capacity to set `Max Steps` on the Academy. Therefore an AcademyReset will never be triggered from C# (only from Python). If you want to reset the simulation after a fixed number of steps, or when an event in the simulation occurs, we recommend looking at our multi-agent example environments (such as BananaCollector). In our examples, groups of Agents can be reset through an "Area" that can reset groups of Agents.
* The import for `mlagents.envs.UnityEnvironment` was removed. If you are using the Python API, change `from mlagents.envs import UnityEnvironment` to `from mlagents.envs.environment import UnityEnvironment`.
* The import for `mlagents.envs.UnityEnvironment` was removed. If you are using the Python API, change `from mlagents_envs import UnityEnvironment` to `from mlagents_envs.environment import UnityEnvironment`.
## Migrating from ML-Agents toolkit v0.8 to v0.9

18
docs/Python-API.md


# Unity ML-Agents Python Low Level API
The `mlagents` Python package contains two components: a low level API which
allows you to interact directly with a Unity Environment (`mlagents.envs`) and
allows you to interact directly with a Unity Environment (`mlagents_envs`) and
an entry point to train (`mlagents-learn`) which allows you to train agents in
Unity Environments using our implementations of reinforcement learning or
imitation learning.

## mlagents.envs
## mlagents_envs
The ML-Agents Toolkit Low Level API is a Python API for controlling the simulation
loop of an environment or game built with Unity. This API is used by the

- **AgentGroupSpec** — describes the shape of the data inside a BatchedStepResult.
For example, provides the dimensions of the observations of a group.
These classes are all defined in the [base_env](../ml-agents-envs/mlagents/envs/base_env.py)
These classes are all defined in the [base_env](../ml-agents-envs/mlagents_envs/base_env.py)
script.
An Agent Group is a group of Agents identified by a string name that share the same

## Loading a Unity Environment
Python-side communication happens through `UnityEnvironment` which is located in
`ml-agents/mlagents/envs`. To load a Unity environment from a built binary
`ml-agents/mlagents_envs`. To load a Unity environment from a built binary
from mlagents.envs.environment import UnityEnvironment
from mlagents_envs.environment import UnityEnvironment
env = UnityEnvironment(file_name="3DBall", base_port=5005, seed=1, side_channels=[])
```

For example :
```python
from mlagents.envs.environment import UnityEnvironment
from mlagents.envs.side_channel.engine_configuration_channel import EngineConfigurationChannel
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.side_channel.engine_configuration_channel import EngineConfigurationChannel
channel = EngineConfigurationChannel()

* `list_properties` Returns a list of all the string identifiers of the properties
```python
from mlagents.envs.environment import UnityEnvironment
from mlagents.envs.side_channel.float_properties_channel import FloatPropertiesChannel
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.side_channel.float_properties_channel import FloatPropertiesChannel
channel = FloatPropertiesChannel()

2
docs/Training-Generalized-Reinforcement-Learning-Agents.md


* **sub-arguments** - `intervals`
The implementation of the samplers can be found at `ml-agents-envs/mlagents/envs/sampler_class.py`.
The implementation of the samplers can be found at `ml-agents-envs/mlagents_envs/sampler_class.py`.
### Defining a New Sampler Type

10
docs/Training-on-Amazon-Web-Service.md


9. Test the instance setup from Python using:
```python
from mlagents.envs.environment import UnityEnvironment
from mlagents_envs.environment import UnityEnvironment
env = UnityEnvironment(<your_env>)
```

Logging to /home/ubuntu/.config/unity3d/<Some_Path>/Player.log
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/ubuntu/ml-agents/ml-agents/mlagents/envs/environment.py", line 63, in __init__
File "/home/ubuntu/ml-agents/ml-agents/mlagents_envs/environment.py", line 63, in __init__
File "/home/ubuntu/ml-agents/ml-agents/mlagents/envs/environment.py", line 489, in send_academy_parameters
File "/home/ubuntu/ml-agents/ml-agents/mlagents_envs/environment.py", line 489, in send_academy_parameters
File "/home/ubuntu/ml-agents/ml-agents/mlagents/envs/rpc_communicator.py", line 60, in initialize
mlagents.envs.exception.UnityTimeOutException: The Unity environment took too long to respond. Make sure that :
File "/home/ubuntu/ml-agents/ml-agents/mlagents_envs/rpc_communicator.py", line 60, in initialize
mlagents_envs.exception.UnityTimeOutException: The Unity environment took too long to respond. Make sure that :
The environment does not need user interaction to launch
The environment and the Python interface have compatible versions.
```

2
docs/Training-on-Microsoft-Azure.md


7. Test the instance setup from Python using:
```python
from mlagents.envs.environment import UnityEnvironment
from mlagents_envs.environment import UnityEnvironment
env = UnityEnvironment(<your_env>)
```

2
gym-unity/gym_unity/envs/__init__.py


import itertools
import gym
import numpy as np
from mlagents.envs.environment import UnityEnvironment
from mlagents_envs.environment import UnityEnvironment
from gym import error, spaces

2
gym-unity/gym_unity/tests/test_gym.py


from gym import spaces
from gym_unity.envs import UnityEnv, UnityGymException
from mlagents.envs.base_env import AgentGroupSpec, ActionType, BatchedStepResult
from mlagents_envs.base_env import AgentGroupSpec, ActionType, BatchedStepResult
@mock.patch("gym_unity.envs.UnityEnvironment")

2
ml-agents-envs/README.md


The `mlagents_envs` Python package contains one sub package:
* `mlagents.envs`: A low level API which allows you to interact directly with a
* `mlagents_envs`: A low level API which allows you to interact directly with a
Unity Environment. See
[here](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Python-API.md)
for more information on using this package.

8
ml-agents-envs/setup.py


import os
import sys
from setuptools import setup
from setuptools import setup, find_packages
import mlagents.envs
import mlagents_envs
VERSION = mlagents.envs.__version__
VERSION = mlagents_envs.__version__
here = os.path.abspath(os.path.dirname(__file__))

"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
],
packages=["mlagents.envs", "mlagents.envs.communicator_objects"], # Required
packages=find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"]),
zip_safe=False,
install_requires=[
"cloudpickle",

2
ml-agents/README.md


The `mlagents` Python package contains two sub packages:
* `mlagents.envs`: A low level API which allows you to interact directly with a
* `mlagents_envs`: A low level API which allows you to interact directly with a
Unity Environment. See
[here](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Python-API.md)
for more information on using this package.

10
ml-agents/mlagents/trainers/brain.py


import numpy as np
import io
from mlagents.envs.communicator_objects.agent_info_pb2 import AgentInfoProto
from mlagents.envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
from mlagents.envs.communicator_objects.observation_pb2 import ObservationProto
from mlagents.envs.timers import hierarchical_timer, timed
from mlagents_envs.communicator_objects.agent_info_pb2 import AgentInfoProto
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
from mlagents_envs.communicator_objects.observation_pb2 import ObservationProto
from mlagents_envs.timers import hierarchical_timer, timed
logger = logging.getLogger("mlagents.envs")
logger = logging.getLogger("mlagents.trainers")
class CameraResolution(NamedTuple):

4
ml-agents/mlagents/trainers/brain_conversion_utils.py


from mlagents.trainers.brain import BrainInfo, BrainParameters, CameraResolution
from mlagents.envs.base_env import BatchedStepResult, AgentGroupSpec
from mlagents.envs.exception import UnityEnvironmentException
from mlagents_envs.base_env import BatchedStepResult, AgentGroupSpec
from mlagents_envs.exception import UnityEnvironmentException
import numpy as np
from typing import List

2
ml-agents/mlagents/trainers/buffer.py


import h5py
from typing import List, BinaryIO
from mlagents.envs.exception import UnityException
from mlagents_envs.exception import UnityException
class BufferException(UnityException):

8
ml-agents/mlagents/trainers/demo_loader.py


from mlagents.trainers.buffer import AgentBuffer
from mlagents.trainers.agent_processor import ProcessingBuffer
from mlagents.trainers.brain import BrainParameters, BrainInfo
from mlagents.envs.communicator_objects.agent_info_action_pair_pb2 import (
from mlagents_envs.communicator_objects.agent_info_action_pair_pb2 import (
from mlagents.envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
from mlagents.envs.communicator_objects.demonstration_meta_pb2 import (
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
from mlagents_envs.communicator_objects.demonstration_meta_pb2 import (
from mlagents.envs.timers import timed, hierarchical_timer
from mlagents_envs.timers import timed, hierarchical_timer
from google.protobuf.internal.decoder import _DecodeVarint32 # type: ignore

14
ml-agents/mlagents/trainers/learn.py


from typing import Any, Callable, Optional, List, NamedTuple
import mlagents.trainers
import mlagents.envs
import mlagents_envs
from mlagents.envs.environment import UnityEnvironment
from mlagents_envs.environment import UnityEnvironment
from mlagents.envs.base_env import BaseEnv
from mlagents_envs.base_env import BaseEnv
from mlagents.envs.side_channel.side_channel import SideChannel
from mlagents.envs.side_channel.engine_configuration_channel import EngineConfig
from mlagents_envs.side_channel.side_channel import SideChannel
from mlagents_envs.side_channel.engine_configuration_channel import EngineConfig
class CommandLineOptions(NamedTuple):

# pylint: disable=no-member
return f""" Version information:
ml-agents: {mlagents.trainers.__version__},
ml-agents-envs: {mlagents.envs.__version__},
ml-agents-envs: {mlagents_envs.__version__},
Communicator API: {UnityEnvironment.API_VERSION},
TensorFlow: {tf_utils.tf.__version__}"""

print(get_version_string())
options = parse_command_line()
trainer_logger = logging.getLogger("mlagents.trainers")
env_logger = logging.getLogger("mlagents.envs")
env_logger = logging.getLogger("mlagents_envs")
trainer_logger.info(options)
if options.debug:
trainer_logger.setLevel("DEBUG")

2
ml-agents/mlagents/trainers/ppo/multi_gpu_policy.py


from tensorflow.python.client import device_lib
from mlagents.trainers.brain import BrainParameters
from mlagents.envs.timers import timed
from mlagents_envs.timers import timed
from mlagents.trainers.models import EncoderType, LearningRateSchedule
from mlagents.trainers.ppo.policy import PPOPolicy
from mlagents.trainers.ppo.models import PPOModel

2
ml-agents/mlagents/trainers/ppo/policy.py


from mlagents.tf_utils import tf
from mlagents.envs.timers import timed
from mlagents_envs.timers import timed
from mlagents.trainers.brain import BrainInfo, BrainParameters
from mlagents.trainers.models import EncoderType, LearningRateSchedule
from mlagents.trainers.ppo.models import PPOModel

2
ml-agents/mlagents/trainers/sac/policy.py


import numpy as np
from mlagents.tf_utils import tf
from mlagents.envs.timers import timed
from mlagents_envs.timers import timed
from mlagents.trainers.brain import BrainInfo, BrainParameters
from mlagents.trainers.models import EncoderType, LearningRateSchedule
from mlagents.trainers.sac.models import SACModel

2
ml-agents/mlagents/trainers/sac/trainer.py


from mlagents.trainers.brain import BrainInfo
from mlagents.trainers.action_info import ActionInfoOutputs
from mlagents.envs.timers import timed
from mlagents_envs.timers import timed
from mlagents.trainers.sac.policy import SACPolicy
from mlagents.trainers.rl_trainer import RLTrainer, AllRewardsOutput

6
ml-agents/mlagents/trainers/simple_env_manager.py


from typing import Dict, List
from mlagents.envs.base_env import BaseEnv
from mlagents_envs.base_env import BaseEnv
from mlagents.envs.timers import timed
from mlagents_envs.timers import timed
from mlagents.envs.side_channel.float_properties_channel import FloatPropertiesChannel
from mlagents_envs.side_channel.float_properties_channel import FloatPropertiesChannel
from mlagents.trainers.brain_conversion_utils import (
step_result_to_brain_info,
group_spec_to_brain_parameters,

16
ml-agents/mlagents/trainers/subprocess_env_manager.py


from typing import Dict, NamedTuple, List, Any, Optional, Callable, Set
import cloudpickle
from mlagents.envs.environment import UnityEnvironment
from mlagents.envs.exception import UnityCommunicationException, UnityTimeOutException
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.exception import UnityCommunicationException, UnityTimeOutException
from mlagents.envs.base_env import BaseEnv
from mlagents_envs.base_env import BaseEnv
from mlagents.envs.timers import (
from mlagents_envs.timers import (
TimerNode,
timed,
hierarchical_timer,

from mlagents.trainers.brain import AllBrainInfo, BrainParameters
from mlagents.trainers.action_info import ActionInfo
from mlagents.envs.side_channel.float_properties_channel import FloatPropertiesChannel
from mlagents.envs.side_channel.engine_configuration_channel import (
from mlagents_envs.side_channel.float_properties_channel import FloatPropertiesChannel
from mlagents_envs.side_channel.engine_configuration_channel import (
from mlagents.envs.side_channel.side_channel import SideChannel
from mlagents_envs.side_channel.side_channel import SideChannel
logger = logging.getLogger("mlagents.envs")
logger = logging.getLogger("mlagents.trainers")
class EnvironmentCommand(NamedTuple):

12
ml-agents/mlagents/trainers/tests/test_bcmodule.py


# Test default values
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_bcmodule_defaults(mock_env):
# See if default values match
mock_brain = mb.create_mock_3dball_brain()

@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_bcmodule_update(mock_env, trainer_config):
mock_brain = mb.create_mock_3dball_brain()
env, policy = create_policy_with_bc_mock(

@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_bcmodule_constant_lr_update(mock_env, trainer_config):
mock_brain = mb.create_mock_3dball_brain()
trainer_config["behavioral_cloning"]["steps"] = 0

@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_bcmodule_rnn_update(mock_env, trainer_config):
mock_brain = mb.create_mock_3dball_brain()
env, policy = create_policy_with_bc_mock(

@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_bcmodule_dc_visual_update(mock_env, trainer_config):
mock_brain = mb.create_mock_banana_brain()
env, policy = create_policy_with_bc_mock(

@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_bcmodule_rnn_dc_update(mock_env, trainer_config):
mock_brain = mb.create_mock_banana_brain()
env, policy = create_policy_with_bc_mock(

14
ml-agents/mlagents/trainers/tests/test_ppo.py


from mlagents.trainers.rl_trainer import AllRewardsOutput
from mlagents.trainers.components.reward_signals import RewardSignalResult
from mlagents.trainers.brain import BrainParameters
from mlagents.envs.environment import UnityEnvironment
from mlagents.envs.mock_communicator import MockCommunicator
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.mock_communicator import MockCommunicator
from mlagents.trainers.tests import mock_brain as mb
from mlagents.trainers.tests.mock_brain import make_brain_parameters
from mlagents.trainers.brain_conversion_utils import (

NUM_AGENTS = 12
@mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator")
@mock.patch("mlagents_envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents_envs.environment.UnityEnvironment.get_communicator")
def test_ppo_policy_evaluate(mock_communicator, mock_launcher, dummy_config):
tf.reset_default_graph()
mock_communicator.return_value = MockCommunicator(

env.close()
@mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator")
@mock.patch("mlagents_envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents_envs.environment.UnityEnvironment.get_communicator")
def test_ppo_get_value_estimates(mock_communicator, mock_launcher, dummy_config):
tf.reset_default_graph()
mock_communicator.return_value = MockCommunicator(

assert trainer.step == 10
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
@pytest.mark.parametrize("use_discrete", [True, False])
def test_trainer_update_policy(mock_env, dummy_config, use_discrete):
env, mock_brain, _ = mb.setup_mock_env_and_brains(

16
ml-agents/mlagents/trainers/tests/test_reward_signals.py


@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_gail_cc(mock_env, trainer_config, gail_dummy_config):
env, policy = create_policy_mock(
mock_env, trainer_config, gail_dummy_config, False, False, False

@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_gail_dc_visual(mock_env, trainer_config, gail_dummy_config):
gail_dummy_config["gail"]["demo_path"] = (
os.path.dirname(os.path.abspath(__file__)) + "/testdcvis.demo"

@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_gail_rnn(mock_env, trainer_config, gail_dummy_config):
env, policy = create_policy_mock(
mock_env, trainer_config, gail_dummy_config, True, False, False

@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_curiosity_cc(mock_env, trainer_config, curiosity_dummy_config):
env, policy = create_policy_mock(
mock_env, trainer_config, curiosity_dummy_config, False, False, False

@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_curiosity_dc(mock_env, trainer_config, curiosity_dummy_config):
env, policy = create_policy_mock(
mock_env, trainer_config, curiosity_dummy_config, False, True, False

@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_curiosity_visual(mock_env, trainer_config, curiosity_dummy_config):
env, policy = create_policy_mock(
mock_env, trainer_config, curiosity_dummy_config, False, False, True

@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_curiosity_rnn(mock_env, trainer_config, curiosity_dummy_config):
env, policy = create_policy_mock(
mock_env, trainer_config, curiosity_dummy_config, True, False, False

@pytest.mark.parametrize(
"trainer_config", [ppo_dummy_config(), sac_dummy_config()], ids=["ppo", "sac"]
)
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_extrinsic(mock_env, trainer_config, curiosity_dummy_config):
env, policy = create_policy_mock(
mock_env, trainer_config, curiosity_dummy_config, False, False, False

10
ml-agents/mlagents/trainers/tests/test_sac.py


return env, policy
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_sac_cc_policy(mock_env, dummy_config):
# Test evaluate
tf.reset_default_graph()

@pytest.mark.parametrize("discrete", [True, False], ids=["discrete", "continuous"])
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_sac_update_reward_signals(mock_env, dummy_config, discrete):
# Test evaluate
tf.reset_default_graph()

env.close()
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_sac_dc_policy(mock_env, dummy_config):
# Test evaluate
tf.reset_default_graph()

env.close()
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_sac_visual_policy(mock_env, dummy_config):
# Test evaluate
tf.reset_default_graph()

assert type(run_out) is dict
@mock.patch("mlagents.envs.environment.UnityEnvironment")
@mock.patch("mlagents_envs.environment.UnityEnvironment")
def test_sac_rnn_policy(mock_env, dummy_config):
# Test evaluate
tf.reset_default_graph()

4
ml-agents/mlagents/trainers/tests/test_simple_rl.py


from mlagents.trainers.trainer_controller import TrainerController
from mlagents.trainers.trainer_util import TrainerFactory
from mlagents.envs.base_env import (
from mlagents_envs.base_env import (
BaseEnv,
AgentGroupSpec,
BatchedStepResult,

from mlagents.trainers.simple_env_manager import SimpleEnvManager
from mlagents.trainers.sampler_class import SamplerManager
from mlagents.envs.side_channel.float_properties_channel import FloatPropertiesChannel
from mlagents_envs.side_channel.float_properties_channel import FloatPropertiesChannel
BRAIN_NAME = __name__
OBS_SIZE = 1

4
ml-agents/mlagents/trainers/tests/test_subprocess_env_manager.py


EnvironmentResponse,
StepResponse,
)
from mlagents.envs.base_env import BaseEnv
from mlagents.envs.side_channel.engine_configuration_channel import EngineConfig
from mlagents_envs.base_env import BaseEnv
from mlagents_envs.side_channel.engine_configuration_channel import EngineConfig
def mock_env_factory(worker_id):

2
ml-agents/mlagents/trainers/tf_policy.py


import numpy as np
from mlagents.tf_utils import tf
from mlagents.envs.exception import UnityException
from mlagents_envs.exception import UnityException
from mlagents.trainers.policy import Policy
from mlagents.trainers.action_info import ActionInfo
from tensorflow.python.platform import gfile

6
ml-agents/mlagents/trainers/trainer.py


from collections import deque, defaultdict
from mlagents.trainers.action_info import ActionInfoOutputs
from mlagents.envs.exception import UnityException
from mlagents.envs.timers import set_gauge
from mlagents_envs.exception import UnityException
from mlagents_envs.timers import set_gauge
from mlagents.trainers.trainer_metrics import TrainerMetrics
from mlagents.trainers.tf_policy import TFPolicy
from mlagents.trainers.brain import BrainParameters, BrainInfo

class Trainer(object):
"""This class is the base class for the mlagents.envs.trainers"""
"""This class is the base class for the mlagents_envs.trainers"""
def __init__(
self,

6
ml-agents/mlagents/trainers/trainer_controller.py


from time import time
from mlagents.trainers.env_manager import EnvManager, EnvironmentStep
from mlagents.envs.exception import (
from mlagents_envs.exception import (
from mlagents.envs.timers import hierarchical_timer, get_timer_tree, timed
from mlagents_envs.timers import hierarchical_timer, get_timer_tree, timed
from mlagents.trainers.trainer import Trainer, TrainerMetrics
from mlagents.trainers.meta_curriculum import MetaCurriculum
from mlagents.trainers.trainer_util import TrainerFactory

self.trainer_factory = trainer_factory
self.model_path = model_path
self.summaries_dir = summaries_dir
self.logger = logging.getLogger("mlagents.envs")
self.logger = logging.getLogger("mlagents.trainers")
self.run_id = run_id
self.save_freq = save_freq
self.train_model = train

6
ml-agents/setup.py


import os
import sys
from setuptools import setup, find_namespace_packages
from setuptools import setup, find_packages
from setuptools.command.install import install
import mlagents.trainers

"Programming Language :: Python :: 3.7",
],
# find_namespace_packages will recurse through the directories and find all the packages
packages=find_namespace_packages(
exclude=["*.tests", "*.tests.*", "tests.*", "tests"]
),
packages=find_packages(exclude=["*.tests", "*.tests.*", "tests.*", "tests"]),
zip_safe=False,
install_requires=[
# Test-only dependencies should go in test_requirements.txt, not here.

4
notebooks/getting-started.ipynb


"import numpy as np\n",
"import sys\n",
"\n",
"from mlagents.envs.environment import UnityEnvironment\n",
"from mlagents.envs.side_channel.engine_configuration_channel import EngineConfig, EngineConfigurationChannel\n",
"from mlagents_envs.environment import UnityEnvironment\n",
"from mlagents_envs.side_channel.engine_configuration_channel import EngineConfig, EngineConfigurationChannel\n",
"\n",
"%matplotlib inline\n",
"\n",

12
protobuf-definitions/make.sh


# variables
# GRPC-TOOLS required. Install with `nuget install Grpc.Tools`.
# GRPC-TOOLS required. Install with `nuget install Grpc.Tools`.
SRC_DIR=proto/mlagents/envs/communicator_objects
SRC_DIR=proto/mlagents_envs/communicator_objects
PYTHON_PACKAGE=mlagents/envs/communicator_objects
PYTHON_PACKAGE=mlagents_envs/communicator_objects
# clean
rm -rf $DST_DIR_C

$COMPILER/protoc --proto_path=proto --csharp_out=$DST_DIR_C $SRC_DIR/*.proto
$COMPILER/protoc --proto_path=proto --python_out=$DST_DIR_P --mypy_out=$DST_DIR_P $SRC_DIR/*.proto
# grpc
# grpc
python3 -m grpc_tools.protoc --proto_path=proto --python_out=$DST_DIR_P --grpc_python_out=$DST_DIR_P $SRC_DIR/$GRPC
python3 -m grpc_tools.protoc --proto_path=proto --python_out=$DST_DIR_P --grpc_python_out=$DST_DIR_P $SRC_DIR/$GRPC
do
do
FILE=${FILE##*/}
# echo from .$(basename $FILE) import \* >> $DST_DIR_P/$PYTHON_PACKAGE/__init__.py
echo from .${FILE%.py} import \* >> $DST_DIR_P/$PYTHON_PACKAGE/__init__.py

8
protobuf-definitions/make_for_win.bat


rem variables
rem GRPC-TOOLS required. Install with `nuget install Grpc.Tools`.
rem GRPC-TOOLS required. Install with `nuget install Grpc.Tools`.
set SRC_DIR=proto\mlagents\envs\communicator_objects
set SRC_DIR=proto\mlagents_envs\communicator_objects
set PYTHON_PACKAGE=mlagents\envs\communicator_objects
set PYTHON_PACKAGE=mlagents_envs\communicator_objects
rem clean
rd /s /q %DST_DIR_C%

rem Generate the init file for the python module
rem rm -f $DST_DIR_P/$PYTHON_PACKAGE/__init__.py
setlocal enabledelayedexpansion
for %%i in (%DST_DIR_P%\%PYTHON_PACKAGE%\*.py) do (
for %%i in (%DST_DIR_P%\%PYTHON_PACKAGE%\*.py) do (
set FILE=%%~ni
rem echo from .$(basename $FILE) import * >> $DST_DIR_P/$PYTHON_PACKAGE/__init__.py
echo from .!FILE! import * >> %DST_DIR_P%\%PYTHON_PACKAGE%\__init__.py

2
utils/validate_versions.py


DIRECTORIES = [
"ml-agents/mlagents/trainers",
"ml-agents-envs/mlagents/envs",
"ml-agents-envs/mlagents_envs",
"gym-unity/gym_unity",
]

6
ml-agents-envs/mlagents_envs/communicator.py


import logging
from typing import Optional
from mlagents.envs.communicator_objects.unity_output_pb2 import UnityOutputProto
from mlagents.envs.communicator_objects.unity_input_pb2 import UnityInputProto
from mlagents_envs.communicator_objects.unity_output_pb2 import UnityOutputProto
from mlagents_envs.communicator_objects.unity_input_pb2 import UnityInputProto
logger = logging.getLogger("mlagents.envs")
logger = logging.getLogger("mlagents_envs")
class Communicator(object):

26
ml-agents-envs/mlagents_envs/environment.py


import subprocess
from typing import Dict, List, Optional, Any
from mlagents.envs.side_channel.side_channel import SideChannel
from mlagents_envs.side_channel.side_channel import SideChannel
from mlagents.envs.base_env import (
from mlagents_envs.base_env import (
BaseEnv,
BatchedStepResult,
AgentGroupSpec,

from mlagents.envs.timers import timed, hierarchical_timer
from mlagents.envs.exception import (
from mlagents_envs.timers import timed, hierarchical_timer
from mlagents_envs.exception import (
UnityEnvironmentException,
UnityCommunicationException,
UnityActionException,

from mlagents.envs.communicator_objects.command_pb2 import STEP, RESET
from mlagents.envs.rpc_utils import (
from mlagents_envs.communicator_objects.command_pb2 import STEP, RESET
from mlagents_envs.rpc_utils import (
from mlagents.envs.communicator_objects.unity_rl_input_pb2 import UnityRLInputProto
from mlagents.envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutputProto
from mlagents.envs.communicator_objects.agent_action_pb2 import AgentActionProto
from mlagents.envs.communicator_objects.unity_output_pb2 import UnityOutputProto
from mlagents.envs.communicator_objects.unity_rl_initialization_input_pb2 import (
from mlagents_envs.communicator_objects.unity_rl_input_pb2 import UnityRLInputProto
from mlagents_envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutputProto
from mlagents_envs.communicator_objects.agent_action_pb2 import AgentActionProto
from mlagents_envs.communicator_objects.unity_output_pb2 import UnityOutputProto
from mlagents_envs.communicator_objects.unity_rl_initialization_input_pb2 import (
from mlagents.envs.communicator_objects.unity_input_pb2 import UnityInputProto
from mlagents_envs.communicator_objects.unity_input_pb2 import UnityInputProto
from .rpc_communicator import RpcCommunicator
from sys import platform

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("mlagents.envs")
logger = logging.getLogger("mlagents_envs")
class UnityEnvironment(BaseEnv):

2
ml-agents-envs/mlagents_envs/exception.py


import logging
logger = logging.getLogger("mlagents.envs")
logger = logging.getLogger("mlagents_envs")
class UnityException(Exception):

16
ml-agents-envs/mlagents_envs/mock_communicator.py


from .communicator import Communicator
from .environment import UnityEnvironment
from mlagents.envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutputProto
from mlagents.envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
from mlagents.envs.communicator_objects.unity_rl_initialization_output_pb2 import (
from mlagents_envs.communicator_objects.unity_rl_output_pb2 import UnityRLOutputProto
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
from mlagents_envs.communicator_objects.unity_rl_initialization_output_pb2 import (
from mlagents.envs.communicator_objects.unity_input_pb2 import UnityInputProto
from mlagents.envs.communicator_objects.unity_output_pb2 import UnityOutputProto
from mlagents.envs.communicator_objects.agent_info_pb2 import AgentInfoProto
from mlagents.envs.communicator_objects.observation_pb2 import (
from mlagents_envs.communicator_objects.unity_input_pb2 import UnityInputProto
from mlagents_envs.communicator_objects.unity_output_pb2 import UnityOutputProto
from mlagents_envs.communicator_objects.agent_info_pb2 import AgentInfoProto
from mlagents_envs.communicator_objects.observation_pb2 import (
from mlagents.envs.communicator_objects.space_type_pb2 import discrete, continuous
from mlagents_envs.communicator_objects.space_type_pb2 import discrete, continuous
class MockCommunicator(Communicator):

10
ml-agents-envs/mlagents_envs/rpc_communicator.py


from concurrent.futures import ThreadPoolExecutor
from .communicator import Communicator
from mlagents.envs.communicator_objects.unity_to_external_pb2_grpc import (
from mlagents_envs.communicator_objects.unity_to_external_pb2_grpc import (
from mlagents.envs.communicator_objects.unity_message_pb2 import UnityMessageProto
from mlagents.envs.communicator_objects.unity_input_pb2 import UnityInputProto
from mlagents.envs.communicator_objects.unity_output_pb2 import UnityOutputProto
from mlagents_envs.communicator_objects.unity_message_pb2 import UnityMessageProto
from mlagents_envs.communicator_objects.unity_input_pb2 import UnityInputProto
from mlagents_envs.communicator_objects.unity_output_pb2 import UnityOutputProto
logger = logging.getLogger("mlagents.envs")
logger = logging.getLogger("mlagents_envs")
class UnityToExternalServicerImplementation(UnityToExternalProtoServicer):

10
ml-agents-envs/mlagents_envs/rpc_utils.py


from mlagents.envs.base_env import AgentGroupSpec, ActionType, BatchedStepResult
from mlagents.envs.timers import hierarchical_timer, timed
from mlagents.envs.communicator_objects.agent_info_pb2 import AgentInfoProto
from mlagents.envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
from mlagents_envs.base_env import AgentGroupSpec, ActionType, BatchedStepResult
from mlagents_envs.timers import hierarchical_timer, timed
from mlagents_envs.communicator_objects.agent_info_pb2 import AgentInfoProto
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
import logging
import numpy as np
import io

logger = logging.getLogger("mlagents.envs")
logger = logging.getLogger("mlagents_envs")
def agent_group_spec_from_proto(

4
ml-agents-envs/mlagents_envs/tests/test_rpc_communicator.py


import pytest
from mlagents.envs.rpc_communicator import RpcCommunicator
from mlagents.envs.exception import UnityWorkerInUseException
from mlagents_envs.rpc_communicator import RpcCommunicator
from mlagents_envs.exception import UnityWorkerInUseException
def test_rpc_communicator_checks_port_on_create():

10
ml-agents-envs/mlagents_envs/tests/test_rpc_utils.py


from typing import List, Tuple
from mlagents.envs.communicator_objects.agent_info_pb2 import AgentInfoProto
from mlagents.envs.communicator_objects.observation_pb2 import (
from mlagents_envs.communicator_objects.agent_info_pb2 import AgentInfoProto
from mlagents_envs.communicator_objects.observation_pb2 import (
from mlagents.envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
from mlagents.envs.base_env import AgentGroupSpec, ActionType
from mlagents_envs.base_env import AgentGroupSpec, ActionType
from mlagents.envs.rpc_utils import (
from mlagents_envs.rpc_utils import (
agent_group_spec_from_proto,
process_pixels,
_process_visual_observation,

8
ml-agents-envs/mlagents_envs/tests/test_side_channel.py


import struct
from mlagents.envs.side_channel.side_channel import SideChannel
from mlagents.envs.side_channel.float_properties_channel import FloatPropertiesChannel
from mlagents.envs.side_channel.raw_bytes_channel import RawBytesChannel
from mlagents.envs.environment import UnityEnvironment
from mlagents_envs.side_channel.side_channel import SideChannel
from mlagents_envs.side_channel.float_properties_channel import FloatPropertiesChannel
from mlagents_envs.side_channel.raw_bytes_channel import RawBytesChannel
from mlagents_envs.environment import UnityEnvironment
class IntChannel(SideChannel):

4
ml-agents-envs/mlagents_envs/tests/test_timers.py


from unittest import mock
from mlagents.envs import timers
from mlagents_envs import timers
@timers.timed

def test_timers() -> None:
with mock.patch(
"mlagents.envs.timers._global_timer_stack", new_callable=timers.TimerStack
"mlagents_envs.timers._global_timer_stack", new_callable=timers.TimerStack
) as test_timer:
# First, run some simple code
with timers.hierarchical_timer("top_level"):

26
ml-agents-envs/mlagents_envs/tests/test_envs.py


import numpy as np
from mlagents.envs.environment import UnityEnvironment
from mlagents.envs.base_env import BatchedStepResult
from mlagents.envs.exception import UnityEnvironmentException, UnityActionException
from mlagents.envs.mock_communicator import MockCommunicator
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.base_env import BatchedStepResult
from mlagents_envs.exception import UnityEnvironmentException, UnityActionException
from mlagents_envs.mock_communicator import MockCommunicator
@mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator")
@mock.patch("mlagents_envs.environment.UnityEnvironment.get_communicator")
@mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator")
@mock.patch("mlagents_envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents_envs.environment.UnityEnvironment.get_communicator")
def test_initialization(mock_communicator, mock_launcher):
mock_communicator.return_value = MockCommunicator(
discrete_action=False, visual_inputs=0

env.close()
@mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator")
@mock.patch("mlagents_envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents_envs.environment.UnityEnvironment.get_communicator")
def test_reset(mock_communicator, mock_launcher):
mock_communicator.return_value = MockCommunicator(
discrete_action=False, visual_inputs=0

assert (n_agents,) + shape == obs.shape
@mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator")
@mock.patch("mlagents_envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents_envs.environment.UnityEnvironment.get_communicator")
def test_step(mock_communicator, mock_launcher):
mock_communicator.return_value = MockCommunicator(
discrete_action=False, visual_inputs=0

assert batched_step_result.done[2]
@mock.patch("mlagents.envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents.envs.environment.UnityEnvironment.get_communicator")
@mock.patch("mlagents_envs.environment.UnityEnvironment.executable_launcher")
@mock.patch("mlagents_envs.environment.UnityEnvironment.get_communicator")
def test_close(mock_communicator, mock_launcher):
comm = MockCommunicator(discrete_action=False, visual_inputs=0)
mock_communicator.return_value = comm

4
ml-agents-envs/mlagents_envs/side_channel/engine_configuration_channel.py


from mlagents.envs.side_channel.side_channel import SideChannel, SideChannelType
from mlagents.envs.exception import UnityCommunicationException
from mlagents_envs.side_channel.side_channel import SideChannel, SideChannelType
from mlagents_envs.exception import UnityCommunicationException
import struct
from typing import NamedTuple

2
ml-agents-envs/mlagents_envs/side_channel/float_properties_channel.py


from mlagents.envs.side_channel.side_channel import SideChannel, SideChannelType
from mlagents_envs.side_channel.side_channel import SideChannel, SideChannelType
import struct
from typing import Dict, Tuple, Optional, List

2
ml-agents-envs/mlagents_envs/side_channel/raw_bytes_channel.py


from mlagents.envs.side_channel.side_channel import SideChannel, SideChannelType
from mlagents_envs.side_channel.side_channel import SideChannel, SideChannelType
from typing import List

8
ml-agents-envs/mlagents_envs/communicator_objects/agent_action_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/agent_action.proto
# source: mlagents_envs/communicator_objects/agent_action.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

DESCRIPTOR = _descriptor.FileDescriptor(
name='mlagents/envs/communicator_objects/agent_action.proto',
name='mlagents_envs/communicator_objects/agent_action.proto',
serialized_pb=_b('\n5mlagents/envs/communicator_objects/agent_action.proto\x12\x14\x63ommunicator_objects\"K\n\x10\x41gentActionProto\x12\x16\n\x0evector_actions\x18\x01 \x03(\x02\x12\r\n\x05value\x18\x04 \x01(\x02J\x04\x08\x02\x10\x03J\x04\x08\x03\x10\x04J\x04\x08\x05\x10\x06\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n5mlagents_envs/communicator_objects/agent_action.proto\x12\x14\x63ommunicator_objects\"K\n\x10\x41gentActionProto\x12\x16\n\x0evector_actions\x18\x01 \x03(\x02\x12\r\n\x05value\x18\x04 \x01(\x02J\x04\x08\x02\x10\x03J\x04\x08\x03\x10\x04J\x04\x08\x05\x10\x06\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
)

AgentActionProto = _reflection.GeneratedProtocolMessageType('AgentActionProto', (_message.Message,), dict(
DESCRIPTOR = _AGENTACTIONPROTO,
__module__ = 'mlagents.envs.communicator_objects.agent_action_pb2'
__module__ = 'mlagents_envs.communicator_objects.agent_action_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.AgentActionProto)
))
_sym_db.RegisterMessage(AgentActionProto)

14
ml-agents-envs/mlagents_envs/communicator_objects/agent_info_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/agent_info.proto
# source: mlagents_envs/communicator_objects/agent_info.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

_sym_db = _symbol_database.Default()
from mlagents.envs.communicator_objects import observation_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_observation__pb2
from mlagents_envs.communicator_objects import observation_pb2 as mlagents__envs_dot_communicator__objects_dot_observation__pb2
name='mlagents/envs/communicator_objects/agent_info.proto',
name='mlagents_envs/communicator_objects/agent_info.proto',
serialized_pb=_b('\n3mlagents/envs/communicator_objects/agent_info.proto\x12\x14\x63ommunicator_objects\x1a\x34mlagents/envs/communicator_objects/observation.proto\"\xd1\x01\n\x0e\x41gentInfoProto\x12\x0e\n\x06reward\x18\x07 \x01(\x02\x12\x0c\n\x04\x64one\x18\x08 \x01(\x08\x12\x18\n\x10max_step_reached\x18\t \x01(\x08\x12\n\n\x02id\x18\n \x01(\x05\x12\x13\n\x0b\x61\x63tion_mask\x18\x0b \x03(\x08\x12<\n\x0cobservations\x18\r \x03(\x0b\x32&.communicator_objects.ObservationProtoJ\x04\x08\x01\x10\x02J\x04\x08\x02\x10\x03J\x04\x08\x03\x10\x04J\x04\x08\x04\x10\x05J\x04\x08\x05\x10\x06J\x04\x08\x06\x10\x07J\x04\x08\x0c\x10\rB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n3mlagents_envs/communicator_objects/agent_info.proto\x12\x14\x63ommunicator_objects\x1a\x34mlagents_envs/communicator_objects/observation.proto\"\xd1\x01\n\x0e\x41gentInfoProto\x12\x0e\n\x06reward\x18\x07 \x01(\x02\x12\x0c\n\x04\x64one\x18\x08 \x01(\x08\x12\x18\n\x10max_step_reached\x18\t \x01(\x08\x12\n\n\x02id\x18\n \x01(\x05\x12\x13\n\x0b\x61\x63tion_mask\x18\x0b \x03(\x08\x12<\n\x0cobservations\x18\r \x03(\x0b\x32&.communicator_objects.ObservationProtoJ\x04\x08\x01\x10\x02J\x04\x08\x02\x10\x03J\x04\x08\x03\x10\x04J\x04\x08\x04\x10\x05J\x04\x08\x05\x10\x06J\x04\x08\x06\x10\x07J\x04\x08\x0c\x10\rB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
dependencies=[mlagents_dot_envs_dot_communicator__objects_dot_observation__pb2.DESCRIPTOR,])
dependencies=[mlagents__envs_dot_communicator__objects_dot_observation__pb2.DESCRIPTOR,])

serialized_end=341,
)
_AGENTINFOPROTO.fields_by_name['observations'].message_type = mlagents_dot_envs_dot_communicator__objects_dot_observation__pb2._OBSERVATIONPROTO
_AGENTINFOPROTO.fields_by_name['observations'].message_type = mlagents__envs_dot_communicator__objects_dot_observation__pb2._OBSERVATIONPROTO
__module__ = 'mlagents.envs.communicator_objects.agent_info_pb2'
__module__ = 'mlagents_envs.communicator_objects.agent_info_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.AgentInfoProto)
))
_sym_db.RegisterMessage(AgentInfoProto)

8
ml-agents-envs/mlagents_envs/communicator_objects/agent_info_pb2.pyi


Message as google___protobuf___message___Message,
)
from mlagents.envs.communicator_objects.observation_pb2 import (
ObservationProto as mlagents___envs___communicator_objects___observation_pb2___ObservationProto,
from mlagents_envs.communicator_objects.observation_pb2 import (
ObservationProto as mlagents_envs___communicator_objects___observation_pb2___ObservationProto,
)
from typing import (

action_mask = ... # type: google___protobuf___internal___containers___RepeatedScalarFieldContainer[builtin___bool]
@property
def observations(self) -> google___protobuf___internal___containers___RepeatedCompositeFieldContainer[mlagents___envs___communicator_objects___observation_pb2___ObservationProto]: ...
def observations(self) -> google___protobuf___internal___containers___RepeatedCompositeFieldContainer[mlagents_envs___communicator_objects___observation_pb2___ObservationProto]: ...
def __init__(self,
*,

id : typing___Optional[builtin___int] = None,
action_mask : typing___Optional[typing___Iterable[builtin___bool]] = None,
observations : typing___Optional[typing___Iterable[mlagents___envs___communicator_objects___observation_pb2___ObservationProto]] = None,
observations : typing___Optional[typing___Iterable[mlagents_envs___communicator_objects___observation_pb2___ObservationProto]] = None,
) -> None: ...
@classmethod
def FromString(cls, s: builtin___bytes) -> AgentInfoProto: ...

14
ml-agents-envs/mlagents_envs/communicator_objects/brain_parameters_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/brain_parameters.proto
# source: mlagents_envs/communicator_objects/brain_parameters.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

_sym_db = _symbol_database.Default()
from mlagents.envs.communicator_objects import space_type_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_space__type__pb2
from mlagents_envs.communicator_objects import space_type_pb2 as mlagents__envs_dot_communicator__objects_dot_space__type__pb2
name='mlagents/envs/communicator_objects/brain_parameters.proto',
name='mlagents_envs/communicator_objects/brain_parameters.proto',
serialized_pb=_b('\n9mlagents/envs/communicator_objects/brain_parameters.proto\x12\x14\x63ommunicator_objects\x1a\x33mlagents/envs/communicator_objects/space_type.proto\"\xd9\x01\n\x14\x42rainParametersProto\x12\x1a\n\x12vector_action_size\x18\x03 \x03(\x05\x12\"\n\x1avector_action_descriptions\x18\x05 \x03(\t\x12\x46\n\x18vector_action_space_type\x18\x06 \x01(\x0e\x32$.communicator_objects.SpaceTypeProto\x12\x12\n\nbrain_name\x18\x07 \x01(\t\x12\x13\n\x0bis_training\x18\x08 \x01(\x08J\x04\x08\x01\x10\x02J\x04\x08\x02\x10\x03J\x04\x08\x04\x10\x05\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n9mlagents_envs/communicator_objects/brain_parameters.proto\x12\x14\x63ommunicator_objects\x1a\x33mlagents_envs/communicator_objects/space_type.proto\"\xd9\x01\n\x14\x42rainParametersProto\x12\x1a\n\x12vector_action_size\x18\x03 \x03(\x05\x12\"\n\x1avector_action_descriptions\x18\x05 \x03(\t\x12\x46\n\x18vector_action_space_type\x18\x06 \x01(\x0e\x32$.communicator_objects.SpaceTypeProto\x12\x12\n\nbrain_name\x18\x07 \x01(\t\x12\x13\n\x0bis_training\x18\x08 \x01(\x08J\x04\x08\x01\x10\x02J\x04\x08\x02\x10\x03J\x04\x08\x04\x10\x05\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
dependencies=[mlagents_dot_envs_dot_communicator__objects_dot_space__type__pb2.DESCRIPTOR,])
dependencies=[mlagents__envs_dot_communicator__objects_dot_space__type__pb2.DESCRIPTOR,])

serialized_end=354,
)
_BRAINPARAMETERSPROTO.fields_by_name['vector_action_space_type'].enum_type = mlagents_dot_envs_dot_communicator__objects_dot_space__type__pb2._SPACETYPEPROTO
_BRAINPARAMETERSPROTO.fields_by_name['vector_action_space_type'].enum_type = mlagents__envs_dot_communicator__objects_dot_space__type__pb2._SPACETYPEPROTO
__module__ = 'mlagents.envs.communicator_objects.brain_parameters_pb2'
__module__ = 'mlagents_envs.communicator_objects.brain_parameters_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.BrainParametersProto)
))
_sym_db.RegisterMessage(BrainParametersProto)

8
ml-agents-envs/mlagents_envs/communicator_objects/brain_parameters_pb2.pyi


Message as google___protobuf___message___Message,
)
from mlagents.envs.communicator_objects.space_type_pb2 import (
SpaceTypeProto as mlagents___envs___communicator_objects___space_type_pb2___SpaceTypeProto,
from mlagents_envs.communicator_objects.space_type_pb2 import (
SpaceTypeProto as mlagents_envs___communicator_objects___space_type_pb2___SpaceTypeProto,
)
from typing import (

DESCRIPTOR: google___protobuf___descriptor___Descriptor = ...
vector_action_size = ... # type: google___protobuf___internal___containers___RepeatedScalarFieldContainer[builtin___int]
vector_action_descriptions = ... # type: google___protobuf___internal___containers___RepeatedScalarFieldContainer[typing___Text]
vector_action_space_type = ... # type: mlagents___envs___communicator_objects___space_type_pb2___SpaceTypeProto
vector_action_space_type = ... # type: mlagents_envs___communicator_objects___space_type_pb2___SpaceTypeProto
brain_name = ... # type: typing___Text
is_training = ... # type: builtin___bool

vector_action_descriptions : typing___Optional[typing___Iterable[typing___Text]] = None,
vector_action_space_type : typing___Optional[mlagents___envs___communicator_objects___space_type_pb2___SpaceTypeProto] = None,
vector_action_space_type : typing___Optional[mlagents_envs___communicator_objects___space_type_pb2___SpaceTypeProto] = None,
brain_name : typing___Optional[typing___Text] = None,
is_training : typing___Optional[builtin___bool] = None,
) -> None: ...

6
ml-agents-envs/mlagents_envs/communicator_objects/command_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/command.proto
# source: mlagents_envs/communicator_objects/command.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

DESCRIPTOR = _descriptor.FileDescriptor(
name='mlagents/envs/communicator_objects/command.proto',
name='mlagents_envs/communicator_objects/command.proto',
serialized_pb=_b('\n0mlagents/envs/communicator_objects/command.proto\x12\x14\x63ommunicator_objects*-\n\x0c\x43ommandProto\x12\x08\n\x04STEP\x10\x00\x12\t\n\x05RESET\x10\x01\x12\x08\n\x04QUIT\x10\x02\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n0mlagents_envs/communicator_objects/command.proto\x12\x14\x63ommunicator_objects*-\n\x0c\x43ommandProto\x12\x08\n\x04STEP\x10\x00\x12\t\n\x05RESET\x10\x01\x12\x08\n\x04QUIT\x10\x02\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
)
_COMMANDPROTO = _descriptor.EnumDescriptor(

8
ml-agents-envs/mlagents_envs/communicator_objects/custom_reset_parameters_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/custom_reset_parameters.proto
# source: mlagents_envs/communicator_objects/custom_reset_parameters.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

DESCRIPTOR = _descriptor.FileDescriptor(
name='mlagents/envs/communicator_objects/custom_reset_parameters.proto',
name='mlagents_envs/communicator_objects/custom_reset_parameters.proto',
serialized_pb=_b('\n@mlagents/envs/communicator_objects/custom_reset_parameters.proto\x12\x14\x63ommunicator_objects\"\x1c\n\x1a\x43ustomResetParametersProtoB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n@mlagents_envs/communicator_objects/custom_reset_parameters.proto\x12\x14\x63ommunicator_objects\"\x1c\n\x1a\x43ustomResetParametersProtoB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
)

CustomResetParametersProto = _reflection.GeneratedProtocolMessageType('CustomResetParametersProto', (_message.Message,), dict(
DESCRIPTOR = _CUSTOMRESETPARAMETERSPROTO,
__module__ = 'mlagents.envs.communicator_objects.custom_reset_parameters_pb2'
__module__ = 'mlagents_envs.communicator_objects.custom_reset_parameters_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.CustomResetParametersProto)
))
_sym_db.RegisterMessage(CustomResetParametersProto)

8
ml-agents-envs/mlagents_envs/communicator_objects/demonstration_meta_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/demonstration_meta.proto
# source: mlagents_envs/communicator_objects/demonstration_meta.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

DESCRIPTOR = _descriptor.FileDescriptor(
name='mlagents/envs/communicator_objects/demonstration_meta.proto',
name='mlagents_envs/communicator_objects/demonstration_meta.proto',
serialized_pb=_b('\n;mlagents/envs/communicator_objects/demonstration_meta.proto\x12\x14\x63ommunicator_objects\"\x8d\x01\n\x16\x44\x65monstrationMetaProto\x12\x13\n\x0b\x61pi_version\x18\x01 \x01(\x05\x12\x1a\n\x12\x64\x65monstration_name\x18\x02 \x01(\t\x12\x14\n\x0cnumber_steps\x18\x03 \x01(\x05\x12\x17\n\x0fnumber_episodes\x18\x04 \x01(\x05\x12\x13\n\x0bmean_reward\x18\x05 \x01(\x02\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n;mlagents_envs/communicator_objects/demonstration_meta.proto\x12\x14\x63ommunicator_objects\"\x8d\x01\n\x16\x44\x65monstrationMetaProto\x12\x13\n\x0b\x61pi_version\x18\x01 \x01(\x05\x12\x1a\n\x12\x64\x65monstration_name\x18\x02 \x01(\t\x12\x14\n\x0cnumber_steps\x18\x03 \x01(\x05\x12\x17\n\x0fnumber_episodes\x18\x04 \x01(\x05\x12\x13\n\x0bmean_reward\x18\x05 \x01(\x02\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
)

DemonstrationMetaProto = _reflection.GeneratedProtocolMessageType('DemonstrationMetaProto', (_message.Message,), dict(
DESCRIPTOR = _DEMONSTRATIONMETAPROTO,
__module__ = 'mlagents.envs.communicator_objects.demonstration_meta_pb2'
__module__ = 'mlagents_envs.communicator_objects.demonstration_meta_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.DemonstrationMetaProto)
))
_sym_db.RegisterMessage(DemonstrationMetaProto)

8
ml-agents-envs/mlagents_envs/communicator_objects/engine_configuration_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/engine_configuration.proto
# source: mlagents_envs/communicator_objects/engine_configuration.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

DESCRIPTOR = _descriptor.FileDescriptor(
name='mlagents/envs/communicator_objects/engine_configuration.proto',
name='mlagents_envs/communicator_objects/engine_configuration.proto',
serialized_pb=_b('\n=mlagents/envs/communicator_objects/engine_configuration.proto\x12\x14\x63ommunicator_objects\"\x95\x01\n\x18\x45ngineConfigurationProto\x12\r\n\x05width\x18\x01 \x01(\x05\x12\x0e\n\x06height\x18\x02 \x01(\x05\x12\x15\n\rquality_level\x18\x03 \x01(\x05\x12\x12\n\ntime_scale\x18\x04 \x01(\x02\x12\x19\n\x11target_frame_rate\x18\x05 \x01(\x05\x12\x14\n\x0cshow_monitor\x18\x06 \x01(\x08\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n=mlagents_envs/communicator_objects/engine_configuration.proto\x12\x14\x63ommunicator_objects\"\x95\x01\n\x18\x45ngineConfigurationProto\x12\r\n\x05width\x18\x01 \x01(\x05\x12\x0e\n\x06height\x18\x02 \x01(\x05\x12\x15\n\rquality_level\x18\x03 \x01(\x05\x12\x12\n\ntime_scale\x18\x04 \x01(\x02\x12\x19\n\x11target_frame_rate\x18\x05 \x01(\x05\x12\x14\n\x0cshow_monitor\x18\x06 \x01(\x08\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
)

EngineConfigurationProto = _reflection.GeneratedProtocolMessageType('EngineConfigurationProto', (_message.Message,), dict(
DESCRIPTOR = _ENGINECONFIGURATIONPROTO,
__module__ = 'mlagents.envs.communicator_objects.engine_configuration_pb2'
__module__ = 'mlagents_envs.communicator_objects.engine_configuration_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.EngineConfigurationProto)
))
_sym_db.RegisterMessage(EngineConfigurationProto)

8
ml-agents-envs/mlagents_envs/communicator_objects/header_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/header.proto
# source: mlagents_envs/communicator_objects/header.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

DESCRIPTOR = _descriptor.FileDescriptor(
name='mlagents/envs/communicator_objects/header.proto',
name='mlagents_envs/communicator_objects/header.proto',
serialized_pb=_b('\n/mlagents/envs/communicator_objects/header.proto\x12\x14\x63ommunicator_objects\".\n\x0bHeaderProto\x12\x0e\n\x06status\x18\x01 \x01(\x05\x12\x0f\n\x07message\x18\x02 \x01(\tB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n/mlagents_envs/communicator_objects/header.proto\x12\x14\x63ommunicator_objects\".\n\x0bHeaderProto\x12\x0e\n\x06status\x18\x01 \x01(\x05\x12\x0f\n\x07message\x18\x02 \x01(\tB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
)

HeaderProto = _reflection.GeneratedProtocolMessageType('HeaderProto', (_message.Message,), dict(
DESCRIPTOR = _HEADERPROTO,
__module__ = 'mlagents.envs.communicator_objects.header_pb2'
__module__ = 'mlagents_envs.communicator_objects.header_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.HeaderProto)
))
_sym_db.RegisterMessage(HeaderProto)

10
ml-agents-envs/mlagents_envs/communicator_objects/observation_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/observation.proto
# source: mlagents_envs/communicator_objects/observation.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

DESCRIPTOR = _descriptor.FileDescriptor(
name='mlagents/envs/communicator_objects/observation.proto',
name='mlagents_envs/communicator_objects/observation.proto',
serialized_pb=_b('\n4mlagents/envs/communicator_objects/observation.proto\x12\x14\x63ommunicator_objects\"\xf9\x01\n\x10ObservationProto\x12\r\n\x05shape\x18\x01 \x03(\x05\x12\x44\n\x10\x63ompression_type\x18\x02 \x01(\x0e\x32*.communicator_objects.CompressionTypeProto\x12\x19\n\x0f\x63ompressed_data\x18\x03 \x01(\x0cH\x00\x12\x46\n\nfloat_data\x18\x04 \x01(\x0b\x32\x30.communicator_objects.ObservationProto.FloatDataH\x00\x1a\x19\n\tFloatData\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x02\x42\x12\n\x10observation_data*)\n\x14\x43ompressionTypeProto\x12\x08\n\x04NONE\x10\x00\x12\x07\n\x03PNG\x10\x01\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n4mlagents_envs/communicator_objects/observation.proto\x12\x14\x63ommunicator_objects\"\xf9\x01\n\x10ObservationProto\x12\r\n\x05shape\x18\x01 \x03(\x05\x12\x44\n\x10\x63ompression_type\x18\x02 \x01(\x0e\x32*.communicator_objects.CompressionTypeProto\x12\x19\n\x0f\x63ompressed_data\x18\x03 \x01(\x0cH\x00\x12\x46\n\nfloat_data\x18\x04 \x01(\x0b\x32\x30.communicator_objects.ObservationProto.FloatDataH\x00\x1a\x19\n\tFloatData\x12\x0c\n\x04\x64\x61ta\x18\x01 \x03(\x02\x42\x12\n\x10observation_data*)\n\x14\x43ompressionTypeProto\x12\x08\n\x04NONE\x10\x00\x12\x07\n\x03PNG\x10\x01\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
)
_COMPRESSIONTYPEPROTO = _descriptor.EnumDescriptor(

FloatData = _reflection.GeneratedProtocolMessageType('FloatData', (_message.Message,), dict(
DESCRIPTOR = _OBSERVATIONPROTO_FLOATDATA,
__module__ = 'mlagents.envs.communicator_objects.observation_pb2'
__module__ = 'mlagents_envs.communicator_objects.observation_pb2'
__module__ = 'mlagents.envs.communicator_objects.observation_pb2'
__module__ = 'mlagents_envs.communicator_objects.observation_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.ObservationProto)
))
_sym_db.RegisterMessage(ObservationProto)

6
ml-agents-envs/mlagents_envs/communicator_objects/space_type_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/space_type.proto
# source: mlagents_envs/communicator_objects/space_type.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

DESCRIPTOR = _descriptor.FileDescriptor(
name='mlagents/envs/communicator_objects/space_type.proto',
name='mlagents_envs/communicator_objects/space_type.proto',
serialized_pb=_b('\n3mlagents/envs/communicator_objects/space_type.proto\x12\x14\x63ommunicator_objects*.\n\x0eSpaceTypeProto\x12\x0c\n\x08\x64iscrete\x10\x00\x12\x0e\n\ncontinuous\x10\x01\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n3mlagents_envs/communicator_objects/space_type.proto\x12\x14\x63ommunicator_objects*.\n\x0eSpaceTypeProto\x12\x0c\n\x08\x64iscrete\x10\x00\x12\x0e\n\ncontinuous\x10\x01\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
)
_SPACETYPEPROTO = _descriptor.EnumDescriptor(

8
ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_initialization_input_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/unity_rl_initialization_input.proto
# source: mlagents_envs/communicator_objects/unity_rl_initialization_input.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

DESCRIPTOR = _descriptor.FileDescriptor(
name='mlagents/envs/communicator_objects/unity_rl_initialization_input.proto',
name='mlagents_envs/communicator_objects/unity_rl_initialization_input.proto',
serialized_pb=_b('\nFmlagents/envs/communicator_objects/unity_rl_initialization_input.proto\x12\x14\x63ommunicator_objects\"/\n\x1fUnityRLInitializationInputProto\x12\x0c\n\x04seed\x18\x01 \x01(\x05\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\nFmlagents_envs/communicator_objects/unity_rl_initialization_input.proto\x12\x14\x63ommunicator_objects\"/\n\x1fUnityRLInitializationInputProto\x12\x0c\n\x04seed\x18\x01 \x01(\x05\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
)

UnityRLInitializationInputProto = _reflection.GeneratedProtocolMessageType('UnityRLInitializationInputProto', (_message.Message,), dict(
DESCRIPTOR = _UNITYRLINITIALIZATIONINPUTPROTO,
__module__ = 'mlagents.envs.communicator_objects.unity_rl_initialization_input_pb2'
__module__ = 'mlagents_envs.communicator_objects.unity_rl_initialization_input_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.UnityRLInitializationInputProto)
))
_sym_db.RegisterMessage(UnityRLInitializationInputProto)

14
ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_initialization_output_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/unity_rl_initialization_output.proto
# source: mlagents_envs/communicator_objects/unity_rl_initialization_output.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

_sym_db = _symbol_database.Default()
from mlagents.envs.communicator_objects import brain_parameters_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_brain__parameters__pb2
from mlagents_envs.communicator_objects import brain_parameters_pb2 as mlagents__envs_dot_communicator__objects_dot_brain__parameters__pb2
name='mlagents/envs/communicator_objects/unity_rl_initialization_output.proto',
name='mlagents_envs/communicator_objects/unity_rl_initialization_output.proto',
serialized_pb=_b('\nGmlagents/envs/communicator_objects/unity_rl_initialization_output.proto\x12\x14\x63ommunicator_objects\x1a\x39mlagents/envs/communicator_objects/brain_parameters.proto\"\x9f\x01\n UnityRLInitializationOutputProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0f\n\x07version\x18\x02 \x01(\t\x12\x10\n\x08log_path\x18\x03 \x01(\t\x12\x44\n\x10\x62rain_parameters\x18\x05 \x03(\x0b\x32*.communicator_objects.BrainParametersProtoJ\x04\x08\x06\x10\x07\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\nGmlagents_envs/communicator_objects/unity_rl_initialization_output.proto\x12\x14\x63ommunicator_objects\x1a\x39mlagents_envs/communicator_objects/brain_parameters.proto\"\x9f\x01\n UnityRLInitializationOutputProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0f\n\x07version\x18\x02 \x01(\t\x12\x10\n\x08log_path\x18\x03 \x01(\t\x12\x44\n\x10\x62rain_parameters\x18\x05 \x03(\x0b\x32*.communicator_objects.BrainParametersProtoJ\x04\x08\x06\x10\x07\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
dependencies=[mlagents_dot_envs_dot_communicator__objects_dot_brain__parameters__pb2.DESCRIPTOR,])
dependencies=[mlagents__envs_dot_communicator__objects_dot_brain__parameters__pb2.DESCRIPTOR,])

serialized_end=316,
)
_UNITYRLINITIALIZATIONOUTPUTPROTO.fields_by_name['brain_parameters'].message_type = mlagents_dot_envs_dot_communicator__objects_dot_brain__parameters__pb2._BRAINPARAMETERSPROTO
_UNITYRLINITIALIZATIONOUTPUTPROTO.fields_by_name['brain_parameters'].message_type = mlagents__envs_dot_communicator__objects_dot_brain__parameters__pb2._BRAINPARAMETERSPROTO
__module__ = 'mlagents.envs.communicator_objects.unity_rl_initialization_output_pb2'
__module__ = 'mlagents_envs.communicator_objects.unity_rl_initialization_output_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.UnityRLInitializationOutputProto)
))
_sym_db.RegisterMessage(UnityRLInitializationOutputProto)

8
ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_initialization_output_pb2.pyi


Message as google___protobuf___message___Message,
)
from mlagents.envs.communicator_objects.brain_parameters_pb2 import (
BrainParametersProto as mlagents___envs___communicator_objects___brain_parameters_pb2___BrainParametersProto,
from mlagents_envs.communicator_objects.brain_parameters_pb2 import (
BrainParametersProto as mlagents_envs___communicator_objects___brain_parameters_pb2___BrainParametersProto,
)
from typing import (

log_path = ... # type: typing___Text
@property
def brain_parameters(self) -> google___protobuf___internal___containers___RepeatedCompositeFieldContainer[mlagents___envs___communicator_objects___brain_parameters_pb2___BrainParametersProto]: ...
def brain_parameters(self) -> google___protobuf___internal___containers___RepeatedCompositeFieldContainer[mlagents_envs___communicator_objects___brain_parameters_pb2___BrainParametersProto]: ...
def __init__(self,
*,

brain_parameters : typing___Optional[typing___Iterable[mlagents___envs___communicator_objects___brain_parameters_pb2___BrainParametersProto]] = None,
brain_parameters : typing___Optional[typing___Iterable[mlagents_envs___communicator_objects___brain_parameters_pb2___BrainParametersProto]] = None,
) -> None: ...
@classmethod
def FromString(cls, s: builtin___bytes) -> UnityRLInitializationOutputProto: ...

22
ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_input_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/unity_rl_input.proto
# source: mlagents_envs/communicator_objects/unity_rl_input.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

_sym_db = _symbol_database.Default()
from mlagents.envs.communicator_objects import agent_action_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_agent__action__pb2
from mlagents.envs.communicator_objects import command_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_command__pb2
from mlagents_envs.communicator_objects import agent_action_pb2 as mlagents__envs_dot_communicator__objects_dot_agent__action__pb2
from mlagents_envs.communicator_objects import command_pb2 as mlagents__envs_dot_communicator__objects_dot_command__pb2
name='mlagents/envs/communicator_objects/unity_rl_input.proto',
name='mlagents_envs/communicator_objects/unity_rl_input.proto',
serialized_pb=_b('\n7mlagents/envs/communicator_objects/unity_rl_input.proto\x12\x14\x63ommunicator_objects\x1a\x35mlagents/envs/communicator_objects/agent_action.proto\x1a\x30mlagents/envs/communicator_objects/command.proto\"\xfe\x02\n\x11UnityRLInputProto\x12P\n\ragent_actions\x18\x01 \x03(\x0b\x32\x39.communicator_objects.UnityRLInputProto.AgentActionsEntry\x12\x33\n\x07\x63ommand\x18\x04 \x01(\x0e\x32\".communicator_objects.CommandProto\x12\x14\n\x0cside_channel\x18\x05 \x01(\x0c\x1aM\n\x14ListAgentActionProto\x12\x35\n\x05value\x18\x01 \x03(\x0b\x32&.communicator_objects.AgentActionProto\x1aq\n\x11\x41gentActionsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12K\n\x05value\x18\x02 \x01(\x0b\x32<.communicator_objects.UnityRLInputProto.ListAgentActionProto:\x02\x38\x01J\x04\x08\x02\x10\x03J\x04\x08\x03\x10\x04\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n7mlagents_envs/communicator_objects/unity_rl_input.proto\x12\x14\x63ommunicator_objects\x1a\x35mlagents_envs/communicator_objects/agent_action.proto\x1a\x30mlagents_envs/communicator_objects/command.proto\"\xfe\x02\n\x11UnityRLInputProto\x12P\n\ragent_actions\x18\x01 \x03(\x0b\x32\x39.communicator_objects.UnityRLInputProto.AgentActionsEntry\x12\x33\n\x07\x63ommand\x18\x04 \x01(\x0e\x32\".communicator_objects.CommandProto\x12\x14\n\x0cside_channel\x18\x05 \x01(\x0c\x1aM\n\x14ListAgentActionProto\x12\x35\n\x05value\x18\x01 \x03(\x0b\x32&.communicator_objects.AgentActionProto\x1aq\n\x11\x41gentActionsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12K\n\x05value\x18\x02 \x01(\x0b\x32<.communicator_objects.UnityRLInputProto.ListAgentActionProto:\x02\x38\x01J\x04\x08\x02\x10\x03J\x04\x08\x03\x10\x04\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
dependencies=[mlagents_dot_envs_dot_communicator__objects_dot_agent__action__pb2.DESCRIPTOR,mlagents_dot_envs_dot_communicator__objects_dot_command__pb2.DESCRIPTOR,])
dependencies=[mlagents__envs_dot_communicator__objects_dot_agent__action__pb2.DESCRIPTOR,mlagents__envs_dot_communicator__objects_dot_command__pb2.DESCRIPTOR,])

serialized_end=569,
)
_UNITYRLINPUTPROTO_LISTAGENTACTIONPROTO.fields_by_name['value'].message_type = mlagents_dot_envs_dot_communicator__objects_dot_agent__action__pb2._AGENTACTIONPROTO
_UNITYRLINPUTPROTO_LISTAGENTACTIONPROTO.fields_by_name['value'].message_type = mlagents__envs_dot_communicator__objects_dot_agent__action__pb2._AGENTACTIONPROTO
_UNITYRLINPUTPROTO.fields_by_name['command'].enum_type = mlagents_dot_envs_dot_communicator__objects_dot_command__pb2._COMMANDPROTO
_UNITYRLINPUTPROTO.fields_by_name['command'].enum_type = mlagents__envs_dot_communicator__objects_dot_command__pb2._COMMANDPROTO
DESCRIPTOR.message_types_by_name['UnityRLInputProto'] = _UNITYRLINPUTPROTO
_sym_db.RegisterFileDescriptor(DESCRIPTOR)

DESCRIPTOR = _UNITYRLINPUTPROTO_LISTAGENTACTIONPROTO,
__module__ = 'mlagents.envs.communicator_objects.unity_rl_input_pb2'
__module__ = 'mlagents_envs.communicator_objects.unity_rl_input_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.UnityRLInputProto.ListAgentActionProto)
))
,

__module__ = 'mlagents.envs.communicator_objects.unity_rl_input_pb2'
__module__ = 'mlagents_envs.communicator_objects.unity_rl_input_pb2'
__module__ = 'mlagents.envs.communicator_objects.unity_rl_input_pb2'
__module__ = 'mlagents_envs.communicator_objects.unity_rl_input_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.UnityRLInputProto)
))
_sym_db.RegisterMessage(UnityRLInputProto)

16
ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_input_pb2.pyi


Message as google___protobuf___message___Message,
)
from mlagents.envs.communicator_objects.agent_action_pb2 import (
AgentActionProto as mlagents___envs___communicator_objects___agent_action_pb2___AgentActionProto,
from mlagents_envs.communicator_objects.agent_action_pb2 import (
AgentActionProto as mlagents_envs___communicator_objects___agent_action_pb2___AgentActionProto,
from mlagents.envs.communicator_objects.command_pb2 import (
CommandProto as mlagents___envs___communicator_objects___command_pb2___CommandProto,
from mlagents_envs.communicator_objects.command_pb2 import (
CommandProto as mlagents_envs___communicator_objects___command_pb2___CommandProto,
)
from typing import (

DESCRIPTOR: google___protobuf___descriptor___Descriptor = ...
@property
def value(self) -> google___protobuf___internal___containers___RepeatedCompositeFieldContainer[mlagents___envs___communicator_objects___agent_action_pb2___AgentActionProto]: ...
def value(self) -> google___protobuf___internal___containers___RepeatedCompositeFieldContainer[mlagents_envs___communicator_objects___agent_action_pb2___AgentActionProto]: ...
value : typing___Optional[typing___Iterable[mlagents___envs___communicator_objects___agent_action_pb2___AgentActionProto]] = None,
value : typing___Optional[typing___Iterable[mlagents_envs___communicator_objects___agent_action_pb2___AgentActionProto]] = None,
) -> None: ...
@classmethod
def FromString(cls, s: builtin___bytes) -> UnityRLInputProto.ListAgentActionProto: ...

def HasField(self, field_name: typing_extensions___Literal[u"value",b"value"]) -> builtin___bool: ...
def ClearField(self, field_name: typing_extensions___Literal[u"key",b"key",u"value",b"value"]) -> None: ...
command = ... # type: mlagents___envs___communicator_objects___command_pb2___CommandProto
command = ... # type: mlagents_envs___communicator_objects___command_pb2___CommandProto
side_channel = ... # type: builtin___bytes
@property

*,
agent_actions : typing___Optional[typing___Mapping[typing___Text, UnityRLInputProto.ListAgentActionProto]] = None,
command : typing___Optional[mlagents___envs___communicator_objects___command_pb2___CommandProto] = None,
command : typing___Optional[mlagents_envs___communicator_objects___command_pb2___CommandProto] = None,
side_channel : typing___Optional[builtin___bytes] = None,
) -> None: ...
@classmethod

18
ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_output_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/unity_rl_output.proto
# source: mlagents_envs/communicator_objects/unity_rl_output.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

_sym_db = _symbol_database.Default()
from mlagents.envs.communicator_objects import agent_info_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_agent__info__pb2
from mlagents_envs.communicator_objects import agent_info_pb2 as mlagents__envs_dot_communicator__objects_dot_agent__info__pb2
name='mlagents/envs/communicator_objects/unity_rl_output.proto',
name='mlagents_envs/communicator_objects/unity_rl_output.proto',
serialized_pb=_b('\n8mlagents/envs/communicator_objects/unity_rl_output.proto\x12\x14\x63ommunicator_objects\x1a\x33mlagents/envs/communicator_objects/agent_info.proto\"\xb9\x02\n\x12UnityRLOutputProto\x12L\n\nagentInfos\x18\x02 \x03(\x0b\x32\x38.communicator_objects.UnityRLOutputProto.AgentInfosEntry\x12\x14\n\x0cside_channel\x18\x03 \x01(\x0c\x1aI\n\x12ListAgentInfoProto\x12\x33\n\x05value\x18\x01 \x03(\x0b\x32$.communicator_objects.AgentInfoProto\x1an\n\x0f\x41gentInfosEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12J\n\x05value\x18\x02 \x01(\x0b\x32;.communicator_objects.UnityRLOutputProto.ListAgentInfoProto:\x02\x38\x01J\x04\x08\x01\x10\x02\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n8mlagents_envs/communicator_objects/unity_rl_output.proto\x12\x14\x63ommunicator_objects\x1a\x33mlagents_envs/communicator_objects/agent_info.proto\"\xb9\x02\n\x12UnityRLOutputProto\x12L\n\nagentInfos\x18\x02 \x03(\x0b\x32\x38.communicator_objects.UnityRLOutputProto.AgentInfosEntry\x12\x14\n\x0cside_channel\x18\x03 \x01(\x0c\x1aI\n\x12ListAgentInfoProto\x12\x33\n\x05value\x18\x01 \x03(\x0b\x32$.communicator_objects.AgentInfoProto\x1an\n\x0f\x41gentInfosEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12J\n\x05value\x18\x02 \x01(\x0b\x32;.communicator_objects.UnityRLOutputProto.ListAgentInfoProto:\x02\x38\x01J\x04\x08\x01\x10\x02\x42\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
dependencies=[mlagents_dot_envs_dot_communicator__objects_dot_agent__info__pb2.DESCRIPTOR,])
dependencies=[mlagents__envs_dot_communicator__objects_dot_agent__info__pb2.DESCRIPTOR,])

serialized_end=449,
)
_UNITYRLOUTPUTPROTO_LISTAGENTINFOPROTO.fields_by_name['value'].message_type = mlagents_dot_envs_dot_communicator__objects_dot_agent__info__pb2._AGENTINFOPROTO
_UNITYRLOUTPUTPROTO_LISTAGENTINFOPROTO.fields_by_name['value'].message_type = mlagents__envs_dot_communicator__objects_dot_agent__info__pb2._AGENTINFOPROTO
_UNITYRLOUTPUTPROTO_LISTAGENTINFOPROTO.containing_type = _UNITYRLOUTPUTPROTO
_UNITYRLOUTPUTPROTO_AGENTINFOSENTRY.fields_by_name['value'].message_type = _UNITYRLOUTPUTPROTO_LISTAGENTINFOPROTO
_UNITYRLOUTPUTPROTO_AGENTINFOSENTRY.containing_type = _UNITYRLOUTPUTPROTO

ListAgentInfoProto = _reflection.GeneratedProtocolMessageType('ListAgentInfoProto', (_message.Message,), dict(
DESCRIPTOR = _UNITYRLOUTPUTPROTO_LISTAGENTINFOPROTO,
__module__ = 'mlagents.envs.communicator_objects.unity_rl_output_pb2'
__module__ = 'mlagents_envs.communicator_objects.unity_rl_output_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.UnityRLOutputProto.ListAgentInfoProto)
))
,

__module__ = 'mlagents.envs.communicator_objects.unity_rl_output_pb2'
__module__ = 'mlagents_envs.communicator_objects.unity_rl_output_pb2'
__module__ = 'mlagents.envs.communicator_objects.unity_rl_output_pb2'
__module__ = 'mlagents_envs.communicator_objects.unity_rl_output_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.UnityRLOutputProto)
))
_sym_db.RegisterMessage(UnityRLOutputProto)

8
ml-agents-envs/mlagents_envs/communicator_objects/unity_rl_output_pb2.pyi


Message as google___protobuf___message___Message,
)
from mlagents.envs.communicator_objects.agent_info_pb2 import (
AgentInfoProto as mlagents___envs___communicator_objects___agent_info_pb2___AgentInfoProto,
from mlagents_envs.communicator_objects.agent_info_pb2 import (
AgentInfoProto as mlagents_envs___communicator_objects___agent_info_pb2___AgentInfoProto,
)
from typing import (

DESCRIPTOR: google___protobuf___descriptor___Descriptor = ...
@property
def value(self) -> google___protobuf___internal___containers___RepeatedCompositeFieldContainer[mlagents___envs___communicator_objects___agent_info_pb2___AgentInfoProto]: ...
def value(self) -> google___protobuf___internal___containers___RepeatedCompositeFieldContainer[mlagents_envs___communicator_objects___agent_info_pb2___AgentInfoProto]: ...
value : typing___Optional[typing___Iterable[mlagents___envs___communicator_objects___agent_info_pb2___AgentInfoProto]] = None,
value : typing___Optional[typing___Iterable[mlagents_envs___communicator_objects___agent_info_pb2___AgentInfoProto]] = None,
) -> None: ...
@classmethod
def FromString(cls, s: builtin___bytes) -> UnityRLOutputProto.ListAgentInfoProto: ...

18
ml-agents-envs/mlagents_envs/communicator_objects/agent_info_action_pair_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/agent_info_action_pair.proto
# source: mlagents_envs/communicator_objects/agent_info_action_pair.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

_sym_db = _symbol_database.Default()
from mlagents.envs.communicator_objects import agent_info_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_agent__info__pb2
from mlagents.envs.communicator_objects import agent_action_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_agent__action__pb2
from mlagents_envs.communicator_objects import agent_info_pb2 as mlagents__envs_dot_communicator__objects_dot_agent__info__pb2
from mlagents_envs.communicator_objects import agent_action_pb2 as mlagents__envs_dot_communicator__objects_dot_agent__action__pb2
name='mlagents/envs/communicator_objects/agent_info_action_pair.proto',
name='mlagents_envs/communicator_objects/agent_info_action_pair.proto',
serialized_pb=_b('\n?mlagents/envs/communicator_objects/agent_info_action_pair.proto\x12\x14\x63ommunicator_objects\x1a\x33mlagents/envs/communicator_objects/agent_info.proto\x1a\x35mlagents/envs/communicator_objects/agent_action.proto\"\x91\x01\n\x18\x41gentInfoActionPairProto\x12\x38\n\nagent_info\x18\x01 \x01(\x0b\x32$.communicator_objects.AgentInfoProto\x12;\n\x0b\x61\x63tion_info\x18\x02 \x01(\x0b\x32&.communicator_objects.AgentActionProtoB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n?mlagents_envs/communicator_objects/agent_info_action_pair.proto\x12\x14\x63ommunicator_objects\x1a\x33mlagents_envs/communicator_objects/agent_info.proto\x1a\x35mlagents_envs/communicator_objects/agent_action.proto\"\x91\x01\n\x18\x41gentInfoActionPairProto\x12\x38\n\nagent_info\x18\x01 \x01(\x0b\x32$.communicator_objects.AgentInfoProto\x12;\n\x0b\x61\x63tion_info\x18\x02 \x01(\x0b\x32&.communicator_objects.AgentActionProtoB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
dependencies=[mlagents_dot_envs_dot_communicator__objects_dot_agent__info__pb2.DESCRIPTOR,mlagents_dot_envs_dot_communicator__objects_dot_agent__action__pb2.DESCRIPTOR,])
dependencies=[mlagents__envs_dot_communicator__objects_dot_agent__info__pb2.DESCRIPTOR,mlagents__envs_dot_communicator__objects_dot_agent__action__pb2.DESCRIPTOR,])

serialized_end=343,
)
_AGENTINFOACTIONPAIRPROTO.fields_by_name['agent_info'].message_type = mlagents_dot_envs_dot_communicator__objects_dot_agent__info__pb2._AGENTINFOPROTO
_AGENTINFOACTIONPAIRPROTO.fields_by_name['action_info'].message_type = mlagents_dot_envs_dot_communicator__objects_dot_agent__action__pb2._AGENTACTIONPROTO
_AGENTINFOACTIONPAIRPROTO.fields_by_name['agent_info'].message_type = mlagents__envs_dot_communicator__objects_dot_agent__info__pb2._AGENTINFOPROTO
_AGENTINFOACTIONPAIRPROTO.fields_by_name['action_info'].message_type = mlagents__envs_dot_communicator__objects_dot_agent__action__pb2._AGENTACTIONPROTO
__module__ = 'mlagents.envs.communicator_objects.agent_info_action_pair_pb2'
__module__ = 'mlagents_envs.communicator_objects.agent_info_action_pair_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.AgentInfoActionPairProto)
))
_sym_db.RegisterMessage(AgentInfoActionPairProto)

16
ml-agents-envs/mlagents_envs/communicator_objects/agent_info_action_pair_pb2.pyi


Message as google___protobuf___message___Message,
)
from mlagents.envs.communicator_objects.agent_action_pb2 import (
AgentActionProto as mlagents___envs___communicator_objects___agent_action_pb2___AgentActionProto,
from mlagents_envs.communicator_objects.agent_action_pb2 import (
AgentActionProto as mlagents_envs___communicator_objects___agent_action_pb2___AgentActionProto,
from mlagents.envs.communicator_objects.agent_info_pb2 import (
AgentInfoProto as mlagents___envs___communicator_objects___agent_info_pb2___AgentInfoProto,
from mlagents_envs.communicator_objects.agent_info_pb2 import (
AgentInfoProto as mlagents_envs___communicator_objects___agent_info_pb2___AgentInfoProto,
)
from typing import (

DESCRIPTOR: google___protobuf___descriptor___Descriptor = ...
@property
def agent_info(self) -> mlagents___envs___communicator_objects___agent_info_pb2___AgentInfoProto: ...
def agent_info(self) -> mlagents_envs___communicator_objects___agent_info_pb2___AgentInfoProto: ...
def action_info(self) -> mlagents___envs___communicator_objects___agent_action_pb2___AgentActionProto: ...
def action_info(self) -> mlagents_envs___communicator_objects___agent_action_pb2___AgentActionProto: ...
agent_info : typing___Optional[mlagents___envs___communicator_objects___agent_info_pb2___AgentInfoProto] = None,
action_info : typing___Optional[mlagents___envs___communicator_objects___agent_action_pb2___AgentActionProto] = None,
agent_info : typing___Optional[mlagents_envs___communicator_objects___agent_info_pb2___AgentInfoProto] = None,
action_info : typing___Optional[mlagents_envs___communicator_objects___agent_action_pb2___AgentActionProto] = None,
) -> None: ...
@classmethod
def FromString(cls, s: builtin___bytes) -> AgentInfoActionPairProto: ...

18
ml-agents-envs/mlagents_envs/communicator_objects/unity_input_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/unity_input.proto
# source: mlagents_envs/communicator_objects/unity_input.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

_sym_db = _symbol_database.Default()
from mlagents.envs.communicator_objects import unity_rl_input_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__input__pb2
from mlagents.envs.communicator_objects import unity_rl_initialization_input_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__initialization__input__pb2
from mlagents_envs.communicator_objects import unity_rl_input_pb2 as mlagents__envs_dot_communicator__objects_dot_unity__rl__input__pb2
from mlagents_envs.communicator_objects import unity_rl_initialization_input_pb2 as mlagents__envs_dot_communicator__objects_dot_unity__rl__initialization__input__pb2
name='mlagents/envs/communicator_objects/unity_input.proto',
name='mlagents_envs/communicator_objects/unity_input.proto',
serialized_pb=_b('\n4mlagents/envs/communicator_objects/unity_input.proto\x12\x14\x63ommunicator_objects\x1a\x37mlagents/envs/communicator_objects/unity_rl_input.proto\x1a\x46mlagents/envs/communicator_objects/unity_rl_initialization_input.proto\"\xa4\x01\n\x0fUnityInputProto\x12\x39\n\x08rl_input\x18\x01 \x01(\x0b\x32\'.communicator_objects.UnityRLInputProto\x12V\n\x17rl_initialization_input\x18\x02 \x01(\x0b\x32\x35.communicator_objects.UnityRLInitializationInputProtoB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n4mlagents_envs/communicator_objects/unity_input.proto\x12\x14\x63ommunicator_objects\x1a\x37mlagents_envs/communicator_objects/unity_rl_input.proto\x1a\x46mlagents_envs/communicator_objects/unity_rl_initialization_input.proto\"\xa4\x01\n\x0fUnityInputProto\x12\x39\n\x08rl_input\x18\x01 \x01(\x0b\x32\'.communicator_objects.UnityRLInputProto\x12V\n\x17rl_initialization_input\x18\x02 \x01(\x0b\x32\x35.communicator_objects.UnityRLInitializationInputProtoB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
dependencies=[mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__input__pb2.DESCRIPTOR,mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__initialization__input__pb2.DESCRIPTOR,])
dependencies=[mlagents__envs_dot_communicator__objects_dot_unity__rl__input__pb2.DESCRIPTOR,mlagents__envs_dot_communicator__objects_dot_unity__rl__initialization__input__pb2.DESCRIPTOR,])

serialized_end=372,
)
_UNITYINPUTPROTO.fields_by_name['rl_input'].message_type = mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__input__pb2._UNITYRLINPUTPROTO
_UNITYINPUTPROTO.fields_by_name['rl_initialization_input'].message_type = mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__initialization__input__pb2._UNITYRLINITIALIZATIONINPUTPROTO
_UNITYINPUTPROTO.fields_by_name['rl_input'].message_type = mlagents__envs_dot_communicator__objects_dot_unity__rl__input__pb2._UNITYRLINPUTPROTO
_UNITYINPUTPROTO.fields_by_name['rl_initialization_input'].message_type = mlagents__envs_dot_communicator__objects_dot_unity__rl__initialization__input__pb2._UNITYRLINITIALIZATIONINPUTPROTO
__module__ = 'mlagents.envs.communicator_objects.unity_input_pb2'
__module__ = 'mlagents_envs.communicator_objects.unity_input_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.UnityInputProto)
))
_sym_db.RegisterMessage(UnityInputProto)

16
ml-agents-envs/mlagents_envs/communicator_objects/unity_input_pb2.pyi


Message as google___protobuf___message___Message,
)
from mlagents.envs.communicator_objects.unity_rl_initialization_input_pb2 import (
UnityRLInitializationInputProto as mlagents___envs___communicator_objects___unity_rl_initialization_input_pb2___UnityRLInitializationInputProto,
from mlagents_envs.communicator_objects.unity_rl_initialization_input_pb2 import (
UnityRLInitializationInputProto as mlagents_envs___communicator_objects___unity_rl_initialization_input_pb2___UnityRLInitializationInputProto,
from mlagents.envs.communicator_objects.unity_rl_input_pb2 import (
UnityRLInputProto as mlagents___envs___communicator_objects___unity_rl_input_pb2___UnityRLInputProto,
from mlagents_envs.communicator_objects.unity_rl_input_pb2 import (
UnityRLInputProto as mlagents_envs___communicator_objects___unity_rl_input_pb2___UnityRLInputProto,
)
from typing import (

DESCRIPTOR: google___protobuf___descriptor___Descriptor = ...
@property
def rl_input(self) -> mlagents___envs___communicator_objects___unity_rl_input_pb2___UnityRLInputProto: ...
def rl_input(self) -> mlagents_envs___communicator_objects___unity_rl_input_pb2___UnityRLInputProto: ...
def rl_initialization_input(self) -> mlagents___envs___communicator_objects___unity_rl_initialization_input_pb2___UnityRLInitializationInputProto: ...
def rl_initialization_input(self) -> mlagents_envs___communicator_objects___unity_rl_initialization_input_pb2___UnityRLInitializationInputProto: ...
rl_input : typing___Optional[mlagents___envs___communicator_objects___unity_rl_input_pb2___UnityRLInputProto] = None,
rl_initialization_input : typing___Optional[mlagents___envs___communicator_objects___unity_rl_initialization_input_pb2___UnityRLInitializationInputProto] = None,
rl_input : typing___Optional[mlagents_envs___communicator_objects___unity_rl_input_pb2___UnityRLInputProto] = None,
rl_initialization_input : typing___Optional[mlagents_envs___communicator_objects___unity_rl_initialization_input_pb2___UnityRLInitializationInputProto] = None,
) -> None: ...
@classmethod
def FromString(cls, s: builtin___bytes) -> UnityInputProto: ...

22
ml-agents-envs/mlagents_envs/communicator_objects/unity_message_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/unity_message.proto
# source: mlagents_envs/communicator_objects/unity_message.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

_sym_db = _symbol_database.Default()
from mlagents.envs.communicator_objects import unity_output_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_unity__output__pb2
from mlagents.envs.communicator_objects import unity_input_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_unity__input__pb2
from mlagents.envs.communicator_objects import header_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_header__pb2
from mlagents_envs.communicator_objects import unity_output_pb2 as mlagents__envs_dot_communicator__objects_dot_unity__output__pb2
from mlagents_envs.communicator_objects import unity_input_pb2 as mlagents__envs_dot_communicator__objects_dot_unity__input__pb2
from mlagents_envs.communicator_objects import header_pb2 as mlagents__envs_dot_communicator__objects_dot_header__pb2
name='mlagents/envs/communicator_objects/unity_message.proto',
name='mlagents_envs/communicator_objects/unity_message.proto',
serialized_pb=_b('\n6mlagents/envs/communicator_objects/unity_message.proto\x12\x14\x63ommunicator_objects\x1a\x35mlagents/envs/communicator_objects/unity_output.proto\x1a\x34mlagents/envs/communicator_objects/unity_input.proto\x1a/mlagents/envs/communicator_objects/header.proto\"\xc0\x01\n\x11UnityMessageProto\x12\x31\n\x06header\x18\x01 \x01(\x0b\x32!.communicator_objects.HeaderProto\x12<\n\x0cunity_output\x18\x02 \x01(\x0b\x32&.communicator_objects.UnityOutputProto\x12:\n\x0bunity_input\x18\x03 \x01(\x0b\x32%.communicator_objects.UnityInputProtoB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n6mlagents_envs/communicator_objects/unity_message.proto\x12\x14\x63ommunicator_objects\x1a\x35mlagents_envs/communicator_objects/unity_output.proto\x1a\x34mlagents_envs/communicator_objects/unity_input.proto\x1a/mlagents_envs/communicator_objects/header.proto\"\xc0\x01\n\x11UnityMessageProto\x12\x31\n\x06header\x18\x01 \x01(\x0b\x32!.communicator_objects.HeaderProto\x12<\n\x0cunity_output\x18\x02 \x01(\x0b\x32&.communicator_objects.UnityOutputProto\x12:\n\x0bunity_input\x18\x03 \x01(\x0b\x32%.communicator_objects.UnityInputProtoB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
dependencies=[mlagents_dot_envs_dot_communicator__objects_dot_unity__output__pb2.DESCRIPTOR,mlagents_dot_envs_dot_communicator__objects_dot_unity__input__pb2.DESCRIPTOR,mlagents_dot_envs_dot_communicator__objects_dot_header__pb2.DESCRIPTOR,])
dependencies=[mlagents__envs_dot_communicator__objects_dot_unity__output__pb2.DESCRIPTOR,mlagents__envs_dot_communicator__objects_dot_unity__input__pb2.DESCRIPTOR,mlagents__envs_dot_communicator__objects_dot_header__pb2.DESCRIPTOR,])

serialized_end=431,
)
_UNITYMESSAGEPROTO.fields_by_name['header'].message_type = mlagents_dot_envs_dot_communicator__objects_dot_header__pb2._HEADERPROTO
_UNITYMESSAGEPROTO.fields_by_name['unity_output'].message_type = mlagents_dot_envs_dot_communicator__objects_dot_unity__output__pb2._UNITYOUTPUTPROTO
_UNITYMESSAGEPROTO.fields_by_name['unity_input'].message_type = mlagents_dot_envs_dot_communicator__objects_dot_unity__input__pb2._UNITYINPUTPROTO
_UNITYMESSAGEPROTO.fields_by_name['header'].message_type = mlagents__envs_dot_communicator__objects_dot_header__pb2._HEADERPROTO
_UNITYMESSAGEPROTO.fields_by_name['unity_output'].message_type = mlagents__envs_dot_communicator__objects_dot_unity__output__pb2._UNITYOUTPUTPROTO
_UNITYMESSAGEPROTO.fields_by_name['unity_input'].message_type = mlagents__envs_dot_communicator__objects_dot_unity__input__pb2._UNITYINPUTPROTO
__module__ = 'mlagents.envs.communicator_objects.unity_message_pb2'
__module__ = 'mlagents_envs.communicator_objects.unity_message_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.UnityMessageProto)
))
_sym_db.RegisterMessage(UnityMessageProto)

24
ml-agents-envs/mlagents_envs/communicator_objects/unity_message_pb2.pyi


Message as google___protobuf___message___Message,
)
from mlagents.envs.communicator_objects.header_pb2 import (
HeaderProto as mlagents___envs___communicator_objects___header_pb2___HeaderProto,
from mlagents_envs.communicator_objects.header_pb2 import (
HeaderProto as mlagents_envs___communicator_objects___header_pb2___HeaderProto,
from mlagents.envs.communicator_objects.unity_input_pb2 import (
UnityInputProto as mlagents___envs___communicator_objects___unity_input_pb2___UnityInputProto,
from mlagents_envs.communicator_objects.unity_input_pb2 import (
UnityInputProto as mlagents_envs___communicator_objects___unity_input_pb2___UnityInputProto,
from mlagents.envs.communicator_objects.unity_output_pb2 import (
UnityOutputProto as mlagents___envs___communicator_objects___unity_output_pb2___UnityOutputProto,
from mlagents_envs.communicator_objects.unity_output_pb2 import (
UnityOutputProto as mlagents_envs___communicator_objects___unity_output_pb2___UnityOutputProto,
)
from typing import (

DESCRIPTOR: google___protobuf___descriptor___Descriptor = ...
@property
def header(self) -> mlagents___envs___communicator_objects___header_pb2___HeaderProto: ...
def header(self) -> mlagents_envs___communicator_objects___header_pb2___HeaderProto: ...
def unity_output(self) -> mlagents___envs___communicator_objects___unity_output_pb2___UnityOutputProto: ...
def unity_output(self) -> mlagents_envs___communicator_objects___unity_output_pb2___UnityOutputProto: ...
def unity_input(self) -> mlagents___envs___communicator_objects___unity_input_pb2___UnityInputProto: ...
def unity_input(self) -> mlagents_envs___communicator_objects___unity_input_pb2___UnityInputProto: ...
header : typing___Optional[mlagents___envs___communicator_objects___header_pb2___HeaderProto] = None,
unity_output : typing___Optional[mlagents___envs___communicator_objects___unity_output_pb2___UnityOutputProto] = None,
unity_input : typing___Optional[mlagents___envs___communicator_objects___unity_input_pb2___UnityInputProto] = None,
header : typing___Optional[mlagents_envs___communicator_objects___header_pb2___HeaderProto] = None,
unity_output : typing___Optional[mlagents_envs___communicator_objects___unity_output_pb2___UnityOutputProto] = None,
unity_input : typing___Optional[mlagents_envs___communicator_objects___unity_input_pb2___UnityInputProto] = None,
) -> None: ...
@classmethod
def FromString(cls, s: builtin___bytes) -> UnityMessageProto: ...

18
ml-agents-envs/mlagents_envs/communicator_objects/unity_output_pb2.py


# Generated by the protocol buffer compiler. DO NOT EDIT!
# source: mlagents/envs/communicator_objects/unity_output.proto
# source: mlagents_envs/communicator_objects/unity_output.proto
import sys
_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))

_sym_db = _symbol_database.Default()
from mlagents.envs.communicator_objects import unity_rl_output_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__output__pb2
from mlagents.envs.communicator_objects import unity_rl_initialization_output_pb2 as mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__initialization__output__pb2
from mlagents_envs.communicator_objects import unity_rl_output_pb2 as mlagents__envs_dot_communicator__objects_dot_unity__rl__output__pb2
from mlagents_envs.communicator_objects import unity_rl_initialization_output_pb2 as mlagents__envs_dot_communicator__objects_dot_unity__rl__initialization__output__pb2
name='mlagents/envs/communicator_objects/unity_output.proto',
name='mlagents_envs/communicator_objects/unity_output.proto',
serialized_pb=_b('\n5mlagents/envs/communicator_objects/unity_output.proto\x12\x14\x63ommunicator_objects\x1a\x38mlagents/envs/communicator_objects/unity_rl_output.proto\x1aGmlagents/envs/communicator_objects/unity_rl_initialization_output.proto\"\xa9\x01\n\x10UnityOutputProto\x12;\n\trl_output\x18\x01 \x01(\x0b\x32(.communicator_objects.UnityRLOutputProto\x12X\n\x18rl_initialization_output\x18\x02 \x01(\x0b\x32\x36.communicator_objects.UnityRLInitializationOutputProtoB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n5mlagents_envs/communicator_objects/unity_output.proto\x12\x14\x63ommunicator_objects\x1a\x38mlagents_envs/communicator_objects/unity_rl_output.proto\x1aGmlagents_envs/communicator_objects/unity_rl_initialization_output.proto\"\xa9\x01\n\x10UnityOutputProto\x12;\n\trl_output\x18\x01 \x01(\x0b\x32(.communicator_objects.UnityRLOutputProto\x12X\n\x18rl_initialization_output\x18\x02 \x01(\x0b\x32\x36.communicator_objects.UnityRLInitializationOutputProtoB\x1f\xaa\x02\x1cMLAgents.CommunicatorObjectsb\x06proto3')
dependencies=[mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__output__pb2.DESCRIPTOR,mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__initialization__output__pb2.DESCRIPTOR,])
dependencies=[mlagents__envs_dot_communicator__objects_dot_unity__rl__output__pb2.DESCRIPTOR,mlagents__envs_dot_communicator__objects_dot_unity__rl__initialization__output__pb2.DESCRIPTOR,])

serialized_end=380,
)
_UNITYOUTPUTPROTO.fields_by_name['rl_output'].message_type = mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__output__pb2._UNITYRLOUTPUTPROTO
_UNITYOUTPUTPROTO.fields_by_name['rl_initialization_output'].message_type = mlagents_dot_envs_dot_communicator__objects_dot_unity__rl__initialization__output__pb2._UNITYRLINITIALIZATIONOUTPUTPROTO
_UNITYOUTPUTPROTO.fields_by_name['rl_output'].message_type = mlagents__envs_dot_communicator__objects_dot_unity__rl__output__pb2._UNITYRLOUTPUTPROTO
_UNITYOUTPUTPROTO.fields_by_name['rl_initialization_output'].message_type = mlagents__envs_dot_communicator__objects_dot_unity__rl__initialization__output__pb2._UNITYRLINITIALIZATIONOUTPUTPROTO
__module__ = 'mlagents.envs.communicator_objects.unity_output_pb2'
__module__ = 'mlagents_envs.communicator_objects.unity_output_pb2'
# @@protoc_insertion_point(class_scope:communicator_objects.UnityOutputProto)
))
_sym_db.RegisterMessage(UnityOutputProto)

部分文件因为文件数量过多而无法显示

正在加载...
取消
保存