GitHub
5 年前
当前提交
587dd165
共有 8 个文件被更改,包括 227 次插入 和 48 次删除
-
2com.unity.ml-agents/CHANGELOG.md
-
11docs/Unity-Inference-Engine.md
-
2ml-agents-envs/setup.py
-
44ml-agents/mlagents/trainers/tf_policy.py
-
5ml-agents/mlagents/trainers/trainer.py
-
2test_constraints_min_version.txt
-
4test_requirements.txt
-
205ml-agents/mlagents/model_serialization.py
|
|||
# pip constraints to use the *lowest* versions allowed in ml-agents/setup.py |
|||
grpcio==1.11.0 |
|||
numpy==1.13.3 |
|||
numpy==1.14.1 |
|||
Pillow==4.2.1 |
|||
protobuf==3.6 |
|||
tensorflow==1.7 |
|
|||
import logging |
|||
from typing import Any, List, Set, NamedTuple |
|||
|
|||
try: |
|||
import onnx |
|||
from tf2onnx.tfonnx import process_tf_graph, tf_optimize |
|||
from tf2onnx import optimizer |
|||
|
|||
ONNX_EXPORT_ENABLED = True |
|||
except ImportError: |
|||
# Either onnx and tf2onnx not installed, or they're not compatible with the version of tensorflow |
|||
ONNX_EXPORT_ENABLED = False |
|||
pass |
|||
|
|||
from mlagents.tf_utils import tf |
|||
|
|||
from tensorflow.python.platform import gfile |
|||
from tensorflow.python.framework import graph_util |
|||
from mlagents.trainers import tensorflow_to_barracuda as tf2bc |
|||
|
|||
logger = logging.getLogger("mlagents.trainers") |
|||
|
|||
POSSIBLE_INPUT_NODES = frozenset( |
|||
[ |
|||
"action_masks", |
|||
"epsilon", |
|||
"prev_action", |
|||
"recurrent_in", |
|||
"sequence_length", |
|||
"vector_observation", |
|||
] |
|||
) |
|||
|
|||
POSSIBLE_OUTPUT_NODES = frozenset( |
|||
["action", "action_probs", "recurrent_out", "value_estimate"] |
|||
) |
|||
|
|||
MODEL_CONSTANTS = frozenset( |
|||
["action_output_shape", "is_continuous_control", "memory_size", "version_number"] |
|||
) |
|||
VISUAL_OBSERVATION_PREFIX = "visual_observation_" |
|||
|
|||
|
|||
class SerializationSettings(NamedTuple): |
|||
model_path: str |
|||
brain_name: str |
|||
convert_to_barracuda: bool = True |
|||
convert_to_onnx: bool = True |
|||
onnx_opset: int = 9 |
|||
|
|||
|
|||
def export_policy_model( |
|||
settings: SerializationSettings, graph: tf.Graph, sess: tf.Session |
|||
) -> None: |
|||
""" |
|||
Exports latest saved model to .nn format for Unity embedding. |
|||
""" |
|||
frozen_graph_def = _make_frozen_graph(settings, graph, sess) |
|||
# Save frozen graph |
|||
frozen_graph_def_path = settings.model_path + "/frozen_graph_def.pb" |
|||
with gfile.GFile(frozen_graph_def_path, "wb") as f: |
|||
f.write(frozen_graph_def.SerializeToString()) |
|||
|
|||
# Convert to barracuda |
|||
if settings.convert_to_barracuda: |
|||
tf2bc.convert(frozen_graph_def_path, settings.model_path + ".nn") |
|||
logger.info(f"Exported {settings.model_path}.nn file") |
|||
|
|||
# Save to onnx too (if we were able to import it) |
|||
if ONNX_EXPORT_ENABLED and settings.convert_to_onnx: |
|||
try: |
|||
onnx_graph = convert_frozen_to_onnx(settings, frozen_graph_def) |
|||
onnx_output_path = settings.model_path + ".onnx" |
|||
with open(onnx_output_path, "wb") as f: |
|||
f.write(onnx_graph.SerializeToString()) |
|||
logger.info(f"Converting to {onnx_output_path}") |
|||
except Exception: |
|||
logger.exception( |
|||
"Exception trying to save ONNX graph. Please report this error on " |
|||
"https://github.com/Unity-Technologies/ml-agents/issues and " |
|||
"attach a copy of frozen_graph_def.pb" |
|||
) |
|||
|
|||
|
|||
def _make_frozen_graph( |
|||
settings: SerializationSettings, graph: tf.Graph, sess: tf.Session |
|||
) -> tf.GraphDef: |
|||
with graph.as_default(): |
|||
target_nodes = ",".join(_process_graph(settings, graph)) |
|||
graph_def = graph.as_graph_def() |
|||
output_graph_def = graph_util.convert_variables_to_constants( |
|||
sess, graph_def, target_nodes.replace(" ", "").split(",") |
|||
) |
|||
return output_graph_def |
|||
|
|||
|
|||
def convert_frozen_to_onnx( |
|||
settings: SerializationSettings, frozen_graph_def: tf.GraphDef |
|||
) -> Any: |
|||
# This is basically https://github.com/onnx/tensorflow-onnx/blob/master/tf2onnx/convert.py |
|||
|
|||
# Some constants in the graph need to be read by the inference system. |
|||
# These aren't used by the model anywhere, so trying to make sure they propagate |
|||
# through conversion and import is a losing battle. Instead, save them now, |
|||
# so that we can add them back later. |
|||
constant_values = {} |
|||
for n in frozen_graph_def.node: |
|||
if n.name in MODEL_CONSTANTS: |
|||
val = n.attr["value"].tensor.int_val[0] |
|||
constant_values[n.name] = val |
|||
|
|||
inputs = _get_input_node_names(frozen_graph_def) |
|||
outputs = _get_output_node_names(frozen_graph_def) |
|||
logger.info(f"onnx export - inputs:{inputs} outputs:{outputs}") |
|||
|
|||
frozen_graph_def = tf_optimize( |
|||
inputs, outputs, frozen_graph_def, fold_constant=True |
|||
) |
|||
|
|||
with tf.Graph().as_default() as tf_graph: |
|||
tf.import_graph_def(frozen_graph_def, name="") |
|||
with tf.Session(graph=tf_graph): |
|||
g = process_tf_graph( |
|||
tf_graph, |
|||
input_names=inputs, |
|||
output_names=outputs, |
|||
opset=settings.onnx_opset, |
|||
) |
|||
|
|||
onnx_graph = optimizer.optimize_graph(g) |
|||
model_proto = onnx_graph.make_model(settings.brain_name) |
|||
|
|||
# Save the constant values back the graph initializer. |
|||
# This will ensure the importer gets them as global constants. |
|||
constant_nodes = [] |
|||
for k, v in constant_values.items(): |
|||
constant_node = _make_onnx_node_for_constant(k, v) |
|||
constant_nodes.append(constant_node) |
|||
model_proto.graph.initializer.extend(constant_nodes) |
|||
return model_proto |
|||
|
|||
|
|||
def _make_onnx_node_for_constant(name: str, value: int) -> Any: |
|||
tensor_value = onnx.TensorProto( |
|||
data_type=onnx.TensorProto.INT32, |
|||
name=name, |
|||
int32_data=[value], |
|||
dims=[1, 1, 1, 1], |
|||
) |
|||
return tensor_value |
|||
|
|||
|
|||
def _get_input_node_names(frozen_graph_def: Any) -> List[str]: |
|||
""" |
|||
Get the list of input node names from the graph. |
|||
Names are suffixed with ":0" |
|||
""" |
|||
node_names = _get_frozen_graph_node_names(frozen_graph_def) |
|||
input_names = node_names & POSSIBLE_INPUT_NODES |
|||
|
|||
# Check visual inputs sequentially, and exit as soon as we don't find one |
|||
vis_index = 0 |
|||
while True: |
|||
vis_node_name = f"{VISUAL_OBSERVATION_PREFIX}{vis_index}" |
|||
if vis_node_name in node_names: |
|||
input_names.add(vis_node_name) |
|||
else: |
|||
break |
|||
vis_index += 1 |
|||
# Append the port |
|||
return [f"{n}:0" for n in input_names] |
|||
|
|||
|
|||
def _get_output_node_names(frozen_graph_def: Any) -> List[str]: |
|||
""" |
|||
Get the list of output node names from the graph. |
|||
Names are suffixed with ":0" |
|||
""" |
|||
node_names = _get_frozen_graph_node_names(frozen_graph_def) |
|||
output_names = node_names & POSSIBLE_OUTPUT_NODES |
|||
# Append the port |
|||
return [f"{n}:0" for n in output_names] |
|||
|
|||
|
|||
def _get_frozen_graph_node_names(frozen_graph_def: Any) -> Set[str]: |
|||
""" |
|||
Get all the node names from the graph. |
|||
""" |
|||
names = set() |
|||
for node in frozen_graph_def.node: |
|||
names.add(node.name) |
|||
return names |
|||
|
|||
|
|||
def _process_graph(settings: SerializationSettings, graph: tf.Graph) -> List[str]: |
|||
""" |
|||
Gets the list of the output nodes present in the graph for inference |
|||
:return: list of node names |
|||
""" |
|||
all_nodes = [x.name for x in graph.as_graph_def().node] |
|||
nodes = [x for x in all_nodes if x in POSSIBLE_OUTPUT_NODES | MODEL_CONSTANTS] |
|||
logger.info("List of nodes to export for brain :" + settings.brain_name) |
|||
for n in nodes: |
|||
logger.info("\t" + n) |
|||
return nodes |
撰写
预览
正在加载...
取消
保存
Reference in new issue