浏览代码

Merge branch 'develop-centralizedcritic-mm' into develop-zombieteammanager

/develop/cc-teammanager
Ervin Teng 4 年前
当前提交
4aea5dcc
共有 21 个文件被更改,包括 253 次插入35 次删除
  1. 11
      Project/Assets/ML-Agents/Examples/Hallway/Scripts/HallwayCollabAgent.cs
  2. 1
      Project/Assets/ML-Agents/Examples/Hallway/TFModels/HallwayCollab.onnx.meta
  3. 2
      com.unity.ml-agents/Editor/BehaviorParametersEditor.cs
  4. 42
      com.unity.ml-agents/Runtime/Agent.cs
  5. 5
      com.unity.ml-agents/Runtime/Communicator/GrpcExtensions.cs
  6. 39
      com.unity.ml-agents/Runtime/Grpc/CommunicatorObjects/AgentInfo.cs
  7. 8
      com.unity.ml-agents/Runtime/Policies/BehaviorParameters.cs
  8. 18
      ml-agents-envs/mlagents_envs/base_env.py
  9. 11
      ml-agents-envs/mlagents_envs/communicator_objects/agent_info_pb2.py
  10. 7
      ml-agents-envs/mlagents_envs/communicator_objects/agent_info_pb2.pyi
  11. 29
      ml-agents-envs/mlagents_envs/rpc_utils.py
  12. 20
      ml-agents/mlagents/trainers/agent_processor.py
  13. 1
      protobuf-definitions/proto/mlagents_envs/communicator_objects/agent_info.proto
  14. 25
      Project/Assets/ML-Agents/Examples/Hallway/Scripts/HallwayTeamManager.cs
  15. 11
      Project/Assets/ML-Agents/Examples/Hallway/Scripts/HallwayTeamManager.cs.meta
  16. 3
      com.unity.ml-agents.extensions/Runtime/Teams.meta
  17. 14
      com.unity.ml-agents/Runtime/ITeamManager.cs
  18. 3
      com.unity.ml-agents/Runtime/ITeamManager.cs.meta
  19. 35
      com.unity.ml-agents.extensions/Runtime/Teams/BaseTeamManager.cs
  20. 3
      com.unity.ml-agents.extensions/Runtime/Teams/BaseTeamManager.cs.meta

11
Project/Assets/ML-Agents/Examples/Hallway/Scripts/HallwayCollabAgent.cs


[HideInInspector]
public int selection = 0;
public override void Initialize()
{
base.Initialize();
if (isSpotter)
{
var teamManager = new HallwayTeamManager();
SetTeamManager(teamManager);
teammate.SetTeamManager(teamManager);
}
}
public override void OnEpisodeBegin()
{
m_Message = -1;

1
Project/Assets/ML-Agents/Examples/Hallway/TFModels/HallwayCollab.onnx.meta


fileIDToRecycleName:
11400000: main obj
11400002: model data
2186277476908879412: ImportLogs
externalObjects: {}
userData:
assetBundleName:

2
com.unity.ml-agents/Editor/BehaviorParametersEditor.cs


const string k_InferenceDeviceName = "m_InferenceDevice";
const string k_BehaviorTypeName = "m_BehaviorType";
const string k_TeamIdName = "TeamId";
const string k_GroupIdName = "GroupId";
const string k_UseChildSensorsName = "m_UseChildSensors";
const string k_ObservableAttributeHandlingName = "m_ObservableAttributeHandling";

}
needPolicyUpdate = needPolicyUpdate || EditorGUI.EndChangeCheck();
EditorGUILayout.PropertyField(so.FindProperty(k_GroupIdName));
EditorGUILayout.PropertyField(so.FindProperty(k_TeamIdName));
EditorGUI.BeginDisabledGroup(!EditorUtilities.CanUpdateModelProperties());
{

42
com.unity.ml-agents/Runtime/Agent.cs


/// </summary>
public int episodeId;
/// <summary>
/// Team Manager identifier.
/// </summary>
public string teamManagerId;
public void ClearActions()
{
storedActions.Clear();

/// </summary>
float[] m_LegacyActionCache;
private ITeamManager m_TeamManager;
/// <summary>
/// Called when the attached [GameObject] becomes enabled and active.
/// [GameObject]: https://docs.unity3d.com/Manual/GameObjects.html

new int[m_ActuatorManager.NumDiscreteActions]
);
if (m_TeamManager != null)
{
m_Info.teamManagerId = m_TeamManager.GetId();
}
// The first time the Academy resets, all Agents in the scene will be
// forced to reset through the <see cref="AgentForceReset"/> event.
// To avoid the Agent resetting twice, the Agents will not begin their

/// <summary>
/// The reason that the Agent has been set to "done".
/// </summary>
enum DoneReason
public enum DoneReason
{
/// <summary>
/// The episode was ended manually by calling <see cref="EndEpisode"/>.

}
}
// Request the last decision with no callbacks
// We request a decision so Python knows the Agent is done immediately
m_Brain?.RequestDecision(m_Info, sensors);
ResetSensors();
if (m_TeamManager != null)
{
// Send final observations to TeamManager if it exists.
// The TeamManager is responsible to keeping track of the Agent after it's
// done, including propagating any "posthumous" rewards.
m_TeamManager.OnAgentDone(this, doneReason, sensors);
}
else
{
SendDoneToTrainer();
}
// We also have to write any to any DemonstationStores so that they get the "done" flag.
foreach (var demoWriter in DemonstrationWriters)

m_RequestAction = false;
m_RequestDecision = false;
m_Info.storedActions.Clear();
}
public void SendDoneToTrainer()
{
// We request a decision so Python knows the Agent is done immediately
m_Brain?.RequestDecision(m_Info, sensors);
ResetSensors();
}
/// <summary>

var actions = m_Brain?.DecideAction() ?? new ActionBuffers();
m_Info.CopyActions(actions);
m_ActuatorManager.UpdateActions(actions);
}
public void SetTeamManager(ITeamManager teamManager)
{
m_TeamManager = teamManager;
m_Info.teamManagerId = teamManager?.GetId();
teamManager?.RegisterAgent(this);
}
}
}

5
com.unity.ml-agents/Runtime/Communicator/GrpcExtensions.cs


agentInfoProto.ActionMask.AddRange(ai.discreteActionMasks);
}
if (ai.teamManagerId != null)
{
agentInfoProto.TeamManagerId = ai.teamManagerId;
}
return agentInfoProto;
}

39
com.unity.ml-agents/Runtime/Grpc/CommunicatorObjects/AgentInfo.cs


string.Concat(
"CjNtbGFnZW50c19lbnZzL2NvbW11bmljYXRvcl9vYmplY3RzL2FnZW50X2lu",
"Zm8ucHJvdG8SFGNvbW11bmljYXRvcl9vYmplY3RzGjRtbGFnZW50c19lbnZz",
"L2NvbW11bmljYXRvcl9vYmplY3RzL29ic2VydmF0aW9uLnByb3RvItEBCg5B",
"L2NvbW11bmljYXRvcl9vYmplY3RzL29ic2VydmF0aW9uLnByb3RvIuoBCg5B",
"YXRvcl9vYmplY3RzLk9ic2VydmF0aW9uUHJvdG9KBAgBEAJKBAgCEANKBAgD",
"EARKBAgEEAVKBAgFEAZKBAgGEAdKBAgMEA1CJaoCIlVuaXR5Lk1MQWdlbnRz",
"LkNvbW11bmljYXRvck9iamVjdHNiBnByb3RvMw=="));
"YXRvcl9vYmplY3RzLk9ic2VydmF0aW9uUHJvdG8SFwoPdGVhbV9tYW5hZ2Vy",
"X2lkGA4gASgJSgQIARACSgQIAhADSgQIAxAESgQIBBAFSgQIBRAGSgQIBhAH",
"SgQIDBANQiWqAiJVbml0eS5NTEFnZW50cy5Db21tdW5pY2F0b3JPYmplY3Rz",
"YgZwcm90bzM="));
new pbr::GeneratedClrTypeInfo(typeof(global::Unity.MLAgents.CommunicatorObjects.AgentInfoProto), global::Unity.MLAgents.CommunicatorObjects.AgentInfoProto.Parser, new[]{ "Reward", "Done", "MaxStepReached", "Id", "ActionMask", "Observations" }, null, null, null)
new pbr::GeneratedClrTypeInfo(typeof(global::Unity.MLAgents.CommunicatorObjects.AgentInfoProto), global::Unity.MLAgents.CommunicatorObjects.AgentInfoProto.Parser, new[]{ "Reward", "Done", "MaxStepReached", "Id", "ActionMask", "Observations", "TeamManagerId" }, null, null, null)
}));
}
#endregion

id_ = other.id_;
actionMask_ = other.actionMask_.Clone();
observations_ = other.observations_.Clone();
teamManagerId_ = other.teamManagerId_;
_unknownFields = pb::UnknownFieldSet.Clone(other._unknownFields);
}

get { return observations_; }
}
/// <summary>Field number for the "team_manager_id" field.</summary>
public const int TeamManagerIdFieldNumber = 14;
private string teamManagerId_ = "";
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public string TeamManagerId {
get { return teamManagerId_; }
set {
teamManagerId_ = pb::ProtoPreconditions.CheckNotNull(value, "value");
}
}
[global::System.Diagnostics.DebuggerNonUserCodeAttribute]
public override bool Equals(object other) {
return Equals(other as AgentInfoProto);

if (Id != other.Id) return false;
if(!actionMask_.Equals(other.actionMask_)) return false;
if(!observations_.Equals(other.observations_)) return false;
if (TeamManagerId != other.TeamManagerId) return false;
return Equals(_unknownFields, other._unknownFields);
}

if (Id != 0) hash ^= Id.GetHashCode();
hash ^= actionMask_.GetHashCode();
hash ^= observations_.GetHashCode();
if (TeamManagerId.Length != 0) hash ^= TeamManagerId.GetHashCode();
if (_unknownFields != null) {
hash ^= _unknownFields.GetHashCode();
}

}
actionMask_.WriteTo(output, _repeated_actionMask_codec);
observations_.WriteTo(output, _repeated_observations_codec);
if (TeamManagerId.Length != 0) {
output.WriteRawTag(114);
output.WriteString(TeamManagerId);
}
if (_unknownFields != null) {
_unknownFields.WriteTo(output);
}

}
size += actionMask_.CalculateSize(_repeated_actionMask_codec);
size += observations_.CalculateSize(_repeated_observations_codec);
if (TeamManagerId.Length != 0) {
size += 1 + pb::CodedOutputStream.ComputeStringSize(TeamManagerId);
}
if (_unknownFields != null) {
size += _unknownFields.CalculateSize();
}

}
actionMask_.Add(other.actionMask_);
observations_.Add(other.observations_);
if (other.TeamManagerId.Length != 0) {
TeamManagerId = other.TeamManagerId;
}
_unknownFields = pb::UnknownFieldSet.MergeFrom(_unknownFields, other._unknownFields);
}

}
case 106: {
observations_.AddEntriesFrom(input, _repeated_observations_codec);
break;
}
case 114: {
TeamManagerId = input.ReadString();
break;
}
}

8
com.unity.ml-agents/Runtime/Policies/BehaviorParameters.cs


[HideInInspector, SerializeField, FormerlySerializedAs("m_TeamID")]
public int TeamId;
/// <summary>
/// The group ID for this behavior.
/// </summary>
[HideInInspector, SerializeField]
[Tooltip("Assign the same Group ID to all Agents in the same Area.")]
public int GroupId;
// TODO properties here instead of Agent
[FormerlySerializedAs("m_useChildSensors")]

/// </summary>
public string FullyQualifiedBehaviorName
{
get { return m_BehaviorName + "?team=" + TeamId + "&group=" + GroupId; }
get { return m_BehaviorName + "?team=" + TeamId; }
}
internal IPolicy GeneratePolicy(ActionSpec actionSpec, HeuristicPolicy.ActionGenerator heuristic)

18
ml-agents-envs/mlagents_envs/base_env.py


reward: float
agent_id: AgentId
action_mask: Optional[List[np.ndarray]]
team_manager_id: Optional[str]
class DecisionSteps(Mapping):

this simulation step.
"""
def __init__(self, obs, reward, agent_id, action_mask):
def __init__(self, obs, reward, agent_id, action_mask, team_manager_id=None):
self.team_manager_id: Optional[List[str]] = team_manager_id
self.action_mask: Optional[List[np.ndarray]] = action_mask
self._agent_id_to_index: Optional[Dict[AgentId, int]] = None

agent_mask = []
for mask in self.action_mask:
agent_mask.append(mask[agent_index])
team_manager_id = None
if self.team_manager_id is not None and self.team_manager_id != "":
team_manager_id = self.team_manager_id[agent_index]
team_manager_id=team_manager_id,
)
def __iter__(self) -> Iterator[Any]:

reward=np.zeros(0, dtype=np.float32),
agent_id=np.zeros(0, dtype=np.int32),
action_mask=None,
team_manager_id=None,
)

reward: float
interrupted: bool
agent_id: AgentId
team_manager_id: Optional[str]
class TerminalSteps(Mapping):

across simulation steps.
"""
def __init__(self, obs, reward, interrupted, agent_id):
def __init__(self, obs, reward, interrupted, agent_id, team_manager_id=None):
self.team_manager_id: Optional[List[str]] = team_manager_id
@property
def agent_id_to_index(self) -> Dict[AgentId, int]:

agent_obs = []
for batched_obs in self.obs:
agent_obs.append(batched_obs[agent_index])
team_manager_id = None
if self.team_manager_id is not None and self.team_manager_id != "":
team_manager_id = self.team_manager_id[agent_index]
team_manager_id=team_manager_id,
)
def __iter__(self) -> Iterator[Any]:

reward=np.zeros(0, dtype=np.float32),
interrupted=np.zeros(0, dtype=np.bool),
agent_id=np.zeros(0, dtype=np.int32),
team_manager_id=None,
)

11
ml-agents-envs/mlagents_envs/communicator_objects/agent_info_pb2.py


name='mlagents_envs/communicator_objects/agent_info.proto',
package='communicator_objects',
syntax='proto3',
serialized_pb=_b('\n3mlagents_envs/communicator_objects/agent_info.proto\x12\x14\x63ommunicator_objects\x1a\x34mlagents_envs/communicator_objects/observation.proto\"\xd1\x01\n\x0e\x41gentInfoProto\x12\x0e\n\x06reward\x18\x07 \x01(\x02\x12\x0c\n\x04\x64one\x18\x08 \x01(\x08\x12\x18\n\x10max_step_reached\x18\t \x01(\x08\x12\n\n\x02id\x18\n \x01(\x05\x12\x13\n\x0b\x61\x63tion_mask\x18\x0b \x03(\x08\x12<\n\x0cobservations\x18\r \x03(\x0b\x32&.communicator_objects.ObservationProtoJ\x04\x08\x01\x10\x02J\x04\x08\x02\x10\x03J\x04\x08\x03\x10\x04J\x04\x08\x04\x10\x05J\x04\x08\x05\x10\x06J\x04\x08\x06\x10\x07J\x04\x08\x0c\x10\rB%\xaa\x02\"Unity.MLAgents.CommunicatorObjectsb\x06proto3')
serialized_pb=_b('\n3mlagents_envs/communicator_objects/agent_info.proto\x12\x14\x63ommunicator_objects\x1a\x34mlagents_envs/communicator_objects/observation.proto\"\xea\x01\n\x0e\x41gentInfoProto\x12\x0e\n\x06reward\x18\x07 \x01(\x02\x12\x0c\n\x04\x64one\x18\x08 \x01(\x08\x12\x18\n\x10max_step_reached\x18\t \x01(\x08\x12\n\n\x02id\x18\n \x01(\x05\x12\x13\n\x0b\x61\x63tion_mask\x18\x0b \x03(\x08\x12<\n\x0cobservations\x18\r \x03(\x0b\x32&.communicator_objects.ObservationProto\x12\x17\n\x0fteam_manager_id\x18\x0e \x01(\tJ\x04\x08\x01\x10\x02J\x04\x08\x02\x10\x03J\x04\x08\x03\x10\x04J\x04\x08\x04\x10\x05J\x04\x08\x05\x10\x06J\x04\x08\x06\x10\x07J\x04\x08\x0c\x10\rB%\xaa\x02\"Unity.MLAgents.CommunicatorObjectsb\x06proto3')
,
dependencies=[mlagents__envs_dot_communicator__objects_dot_observation__pb2.DESCRIPTOR,])

message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
_descriptor.FieldDescriptor(
name='team_manager_id', full_name='communicator_objects.AgentInfoProto.team_manager_id', index=6,
number=14, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=_b("").decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
options=None, file=DESCRIPTOR),
],
extensions=[
],

oneofs=[
],
serialized_start=132,
serialized_end=341,
serialized_end=366,
)
_AGENTINFOPROTO.fields_by_name['observations'].message_type = mlagents__envs_dot_communicator__objects_dot_observation__pb2._OBSERVATIONPROTO

7
ml-agents-envs/mlagents_envs/communicator_objects/agent_info_pb2.pyi


from typing import (
Iterable as typing___Iterable,
Optional as typing___Optional,
Text as typing___Text,
)
from typing_extensions import (

max_step_reached = ... # type: builtin___bool
id = ... # type: builtin___int
action_mask = ... # type: google___protobuf___internal___containers___RepeatedScalarFieldContainer[builtin___bool]
team_manager_id = ... # type: typing___Text
@property
def observations(self) -> google___protobuf___internal___containers___RepeatedCompositeFieldContainer[mlagents_envs___communicator_objects___observation_pb2___ObservationProto]: ...

id : typing___Optional[builtin___int] = None,
action_mask : typing___Optional[typing___Iterable[builtin___bool]] = None,
observations : typing___Optional[typing___Iterable[mlagents_envs___communicator_objects___observation_pb2___ObservationProto]] = None,
team_manager_id : typing___Optional[typing___Text] = None,
) -> None: ...
@classmethod
def FromString(cls, s: builtin___bytes) -> AgentInfoProto: ...

def ClearField(self, field_name: typing_extensions___Literal[u"action_mask",u"done",u"id",u"max_step_reached",u"observations",u"reward"]) -> None: ...
def ClearField(self, field_name: typing_extensions___Literal[u"action_mask",u"done",u"id",u"max_step_reached",u"observations",u"reward",u"team_manager_id"]) -> None: ...
def ClearField(self, field_name: typing_extensions___Literal[u"action_mask",b"action_mask",u"done",b"done",u"id",b"id",u"max_step_reached",b"max_step_reached",u"observations",b"observations",u"reward",b"reward"]) -> None: ...
def ClearField(self, field_name: typing_extensions___Literal[u"action_mask",b"action_mask",u"done",b"done",u"id",b"id",u"max_step_reached",b"max_step_reached",u"observations",b"observations",u"reward",b"reward",u"team_manager_id",b"team_manager_id"]) -> None: ...

29
ml-agents-envs/mlagents_envs/rpc_utils.py


decision_rewards = np.array(
[agent_info.reward for agent_info in decision_agent_info_list], dtype=np.float32
)
decision_team_manager = [
agent_info.team_manager_id
for agent_info in decision_agent_info_list
if agent_info.team_manager_id is not None
]
if len(decision_team_manager) == 0:
decision_team_manager = None
terminal_team_manager = [
agent_info.team_manager_id
for agent_info in terminal_agent_info_list
if agent_info.team_manager_id is not None
]
if len(terminal_team_manager) == 0:
terminal_team_manager = None
_raise_on_nan_and_inf(decision_rewards, "rewards")
_raise_on_nan_and_inf(terminal_rewards, "rewards")

action_mask = np.split(action_mask, indices, axis=1)
return (
DecisionSteps(
decision_obs_list, decision_rewards, decision_agent_id, action_mask
decision_obs_list,
decision_rewards,
decision_agent_id,
action_mask,
decision_team_manager,
TerminalSteps(terminal_obs_list, terminal_rewards, max_step, terminal_agent_id),
TerminalSteps(
terminal_obs_list,
terminal_rewards,
max_step,
terminal_agent_id,
terminal_team_manager,
),
)

20
ml-agents/mlagents/trainers/agent_processor.py


self.experience_buffers: Dict[str, List[AgentExperience]] = defaultdict(list)
self.last_experience: Dict[str, AgentExperience] = {}
self.last_step_result: Dict[str, Tuple[DecisionStep, int]] = {}
# current_obs is used to collect the last seen obs of all the agents, and assemble the next_collab_obs.
self.current_obs: Dict[str, List[np.ndarray]] = {}
# current_group_obs is used to collect the last seen obs of all the agents in the same group,
# and assemble the next_collab_obs.
self.current_group_obs: Dict[str, Dict[str, List[np.ndarray]]] = defaultdict(
lambda: defaultdict(list)
)
# last_take_action_outputs stores the action a_t taken before the current observation s_(t+1), while
# grabbing previous_action from the policy grabs the action PRIOR to that, a_(t-1).
self.last_take_action_outputs: Dict[str, ActionInfoOutputs] = {}

local_id = terminal_step.agent_id
global_id = get_global_agent_id(worker_id, local_id)
self._assemble_trajectory(terminal_step, global_id)
self.current_obs.clear()
self.current_group_obs.clear()
# Clean the last experience dictionary for terminal steps
for terminal_step in terminal_steps.values():

local_id = ongoing_step.agent_id
global_id = get_global_agent_id(worker_id, local_id)
self._assemble_trajectory(ongoing_step, global_id)
self.current_obs.clear()
self.current_group_obs.clear()
for _gid in action_global_agent_ids:
# If the ID doesn't have a last step result, the agent just reset,

interrupted=interrupted,
memory=memory,
)
self.current_obs[global_id] = step.obs
if step.team_manager_id is not None:
self.current_group_obs[step.team_manager_id][global_id] += step.obs
self.last_experience[global_id] = experience
def _assemble_trajectory(

):
next_obs = step.obs
next_collab_obs = []
for _id, _exp in self.current_obs.items():
if _id == global_id:
continue
else:
for _id, _exp in self.current_group_obs[step.team_manager_id].items():
if _id != global_id:
next_collab_obs.append(_exp)
trajectory = Trajectory(

1
protobuf-definitions/proto/mlagents_envs/communicator_objects/agent_info.proto


repeated bool action_mask = 11;
reserved 12; // deprecated CustomObservationProto custom_observation = 12;
repeated ObservationProto observations = 13;
string team_manager_id = 14;
}

25
Project/Assets/ML-Agents/Examples/Hallway/Scripts/HallwayTeamManager.cs


using System.Collections.Generic;
using Unity.MLAgents;
using Unity.MLAgents.Extensions.Teams;
using Unity.MLAgents.Sensors;
public class HallwayTeamManager : BaseTeamManager
{
List<Agent> m_AgentList = new List<Agent> { };
public override void RegisterAgent(Agent agent)
{
m_AgentList.Add(agent);
}
public override void OnAgentDone(Agent agent, Agent.DoneReason doneReason, List<ISensor> sensors)
{
agent.SendDoneToTrainer();
}
public override void AddTeamReward(float reward)
{
}
}

11
Project/Assets/ML-Agents/Examples/Hallway/Scripts/HallwayTeamManager.cs.meta


fileFormatVersion: 2
guid: 8b67166b7adef46febf8b570f92c400d
MonoImporter:
externalObjects: {}
serializedVersion: 2
defaultReferences: []
executionOrder: 0
icon: {instanceID: 0}
userData:
assetBundleName:
assetBundleVariant:

3
com.unity.ml-agents.extensions/Runtime/Teams.meta


fileFormatVersion: 2
guid: 77124df6c18c4f669052016b3116147e
timeCreated: 1610064454

14
com.unity.ml-agents/Runtime/ITeamManager.cs


using System.Collections.Generic;
using Unity.MLAgents.Sensors;
namespace Unity.MLAgents
{
public interface ITeamManager
{
string GetId();
void RegisterAgent(Agent agent);
// TODO not sure this is all the info we need, maybe pass a class/struct instead.
void OnAgentDone(Agent agent, Agent.DoneReason doneReason, List<ISensor> sensors);
}
}

3
com.unity.ml-agents/Runtime/ITeamManager.cs.meta


fileFormatVersion: 2
guid: 75810d91665e4477977eb78c9b15aeb3
timeCreated: 1610057818

35
com.unity.ml-agents.extensions/Runtime/Teams/BaseTeamManager.cs


using System.Collections.Generic;
using Unity.MLAgents;
using Unity.MLAgents.Sensors;
namespace Unity.MLAgents.Extensions.Teams
{
public class BaseTeamManager : ITeamManager
{
readonly string m_Id = System.Guid.NewGuid().ToString();
public virtual void RegisterAgent(Agent agent)
{
throw new System.NotImplementedException();
}
public virtual void OnAgentDone(Agent agent, Agent.DoneReason doneReason, List<ISensor> sensors)
{
// Possible implementation - save reference to Agent's IPolicy so that we can repeatedly
// call IPolicy.RequestDecision on behalf of the Agent after it's dead
// If so, we'll need dummy sensor impls with the same shape as the originals.
throw new System.NotImplementedException();
}
public virtual void AddTeamReward(float reward)
{
}
public string GetId()
{
return m_Id;
}
}
}

3
com.unity.ml-agents.extensions/Runtime/Teams/BaseTeamManager.cs.meta


fileFormatVersion: 2
guid: b2967f9c3bd4449a98ad309085094769
timeCreated: 1610064493
正在加载...
取消
保存