浏览代码

Merge branch 'develop-action-buffer' into develop-hybrid-actions-singleton

/develop/actionmodel-csharp
Andrew Cohen 4 年前
当前提交
498b1ee6
共有 113 个文件被更改,包括 1577 次插入932 次删除
  1. 2
      .github/ISSUE_TEMPLATE/bug_report.md
  2. 4
      .github/workflows/pytest.yml
  3. 11
      .yamato/test_versions.metafile
  4. 2
      .yamato/training-int-tests.yml
  5. 22
      Project/Assets/ML-Agents/Examples/SharedAssets/Scripts/ModelOverrider.cs
  6. 8
      README.md
  7. 11
      com.unity.ml-agents/CHANGELOG.md
  8. 27
      com.unity.ml-agents/Runtime/Academy.cs
  9. 24
      com.unity.ml-agents/Runtime/Agent.cs
  10. 56
      com.unity.ml-agents/Tests/Editor/MLAgentsEditModeTest.cs
  11. 2
      com.unity.ml-agents/package.json
  12. 2
      docs/Background-Machine-Learning.md
  13. 10
      docs/Getting-Started.md
  14. 24
      docs/Installation.md
  15. 4
      docs/Learning-Environment-Executable.md
  16. 8
      docs/ML-Agents-Overview.md
  17. 2
      docs/Readme.md
  18. 2
      docs/Training-Configuration-File.md
  19. 35
      docs/Training-ML-Agents.md
  20. 2
      docs/Training-on-Amazon-Web-Service.md
  21. 5
      docs/Unity-Inference-Engine.md
  22. 21
      gym-unity/gym_unity/envs/__init__.py
  23. 8
      gym-unity/gym_unity/tests/test_gym.py
  24. 192
      ml-agents-envs/mlagents_envs/base_env.py
  25. 51
      ml-agents-envs/mlagents_envs/environment.py
  26. 18
      ml-agents-envs/mlagents_envs/rpc_utils.py
  27. 18
      ml-agents-envs/mlagents_envs/tests/test_envs.py
  28. 30
      ml-agents-envs/mlagents_envs/tests/test_rpc_utils.py
  29. 69
      ml-agents-envs/mlagents_envs/tests/test_steps.py
  30. 1
      ml-agents/mlagents/tf_utils/__init__.py
  31. 63
      ml-agents/mlagents/tf_utils/tf.py
  32. 1
      ml-agents/mlagents/torch_utils/__init__.py
  33. 66
      ml-agents/mlagents/torch_utils/torch.py
  34. 19
      ml-agents/mlagents/trainers/agent_processor.py
  35. 2
      ml-agents/mlagents/trainers/buffer.py
  36. 11
      ml-agents/mlagents/trainers/cli_utils.py
  37. 22
      ml-agents/mlagents/trainers/demo_loader.py
  38. 15
      ml-agents/mlagents/trainers/env_manager.py
  39. 16
      ml-agents/mlagents/trainers/ghost/trainer.py
  40. 6
      ml-agents/mlagents/trainers/learn.py
  41. 6
      ml-agents/mlagents/trainers/optimizer/tf_optimizer.py
  42. 47
      ml-agents/mlagents/trainers/policy/policy.py
  43. 19
      ml-agents/mlagents/trainers/policy/tf_policy.py
  44. 86
      ml-agents/mlagents/trainers/policy/torch_policy.py
  45. 17
      ml-agents/mlagents/trainers/ppo/optimizer_tf.py
  46. 14
      ml-agents/mlagents/trainers/ppo/optimizer_torch.py
  47. 40
      ml-agents/mlagents/trainers/ppo/trainer.py
  48. 8
      ml-agents/mlagents/trainers/sac/optimizer_tf.py
  49. 71
      ml-agents/mlagents/trainers/sac/optimizer_torch.py
  50. 61
      ml-agents/mlagents/trainers/sac/trainer.py
  51. 2
      ml-agents/mlagents/trainers/settings.py
  52. 3
      ml-agents/mlagents/trainers/simple_env_manager.py
  53. 86
      ml-agents/mlagents/trainers/stats.py
  54. 5
      ml-agents/mlagents/trainers/subprocess_env_manager.py
  55. 71
      ml-agents/mlagents/trainers/tests/mock_brain.py
  56. 42
      ml-agents/mlagents/trainers/tests/simple_test_envs.py
  57. 46
      ml-agents/mlagents/trainers/tests/tensorflow/test_ghost.py
  58. 5
      ml-agents/mlagents/trainers/tests/tensorflow/test_models.py
  59. 8
      ml-agents/mlagents/trainers/tests/tensorflow/test_nn_policy.py
  60. 12
      ml-agents/mlagents/trainers/tests/tensorflow/test_ppo.py
  61. 9
      ml-agents/mlagents/trainers/tests/tensorflow/test_sac.py
  62. 4
      ml-agents/mlagents/trainers/tests/tensorflow/test_saver.py
  63. 8
      ml-agents/mlagents/trainers/tests/tensorflow/test_simple_rl.py
  64. 27
      ml-agents/mlagents/trainers/tests/tensorflow/test_tf_policy.py
  65. 47
      ml-agents/mlagents/trainers/tests/test_agent_processor.py
  66. 10
      ml-agents/mlagents/trainers/tests/test_demo_loader.py
  67. 6
      ml-agents/mlagents/trainers/tests/test_rl_trainer.py
  68. 20
      ml-agents/mlagents/trainers/tests/test_stats.py
  69. 8
      ml-agents/mlagents/trainers/tests/test_trajectory.py
  70. 9
      ml-agents/mlagents/trainers/tests/torch/saver/test_saver.py
  71. 46
      ml-agents/mlagents/trainers/tests/torch/test_ghost.py
  72. 41
      ml-agents/mlagents/trainers/tests/torch/test_networks.py
  73. 40
      ml-agents/mlagents/trainers/tests/torch/test_policy.py
  74. 33
      ml-agents/mlagents/trainers/tests/torch/test_ppo.py
  75. 34
      ml-agents/mlagents/trainers/tests/torch/test_reward_providers/test_curiosity.py
  76. 18
      ml-agents/mlagents/trainers/tests/torch/test_reward_providers/test_extrinsic.py
  77. 29
      ml-agents/mlagents/trainers/tests/torch/test_reward_providers/test_gail.py
  78. 25
      ml-agents/mlagents/trainers/tests/torch/test_reward_providers/test_rnd.py
  79. 17
      ml-agents/mlagents/trainers/tests/torch/test_reward_providers/utils.py
  80. 6
      ml-agents/mlagents/trainers/tests/torch/test_simple_rl.py
  81. 19
      ml-agents/mlagents/trainers/tests/torch/test_utils.py
  82. 2
      ml-agents/mlagents/trainers/tf/components/bc/model.py
  83. 10
      ml-agents/mlagents/trainers/tf/components/bc/module.py
  84. 2
      ml-agents/mlagents/trainers/tf/components/reward_signals/curiosity/model.py
  85. 10
      ml-agents/mlagents/trainers/tf/components/reward_signals/curiosity/signal.py
  86. 2
      ml-agents/mlagents/trainers/tf/components/reward_signals/gail/model.py
  87. 17
      ml-agents/mlagents/trainers/tf/components/reward_signals/gail/signal.py
  88. 4
      ml-agents/mlagents/trainers/tf/model_serialization.py
  89. 29
      ml-agents/mlagents/trainers/torch/components/bc/module.py
  90. 29
      ml-agents/mlagents/trainers/torch/components/reward_providers/curiosity_reward_provider.py
  91. 9
      ml-agents/mlagents/trainers/torch/components/reward_providers/gail_reward_provider.py
  92. 1
      ml-agents/mlagents/trainers/torch/components/reward_providers/rnd_reward_provider.py
  93. 6
      ml-agents/mlagents/trainers/torch/distributions.py
  94. 4
      ml-agents/mlagents/trainers/torch/model_serialization.py
  95. 82
      ml-agents/mlagents/trainers/torch/networks.py
  96. 231
      ml-agents/mlagents/trainers/torch/utils.py
  97. 34
      ml-agents/mlagents/trainers/trainer/rl_trainer.py
  98. 18
      ml-agents/mlagents/trainers/trainer/trainer_factory.py
  99. 10
      ml-agents/mlagents/trainers/trainer_controller.py
  100. 12
      ml-agents/mlagents/trainers/training_status.py

2
.github/ISSUE_TEMPLATE/bug_report.md


- Unity Version: [e.g. Unity 2020.1f1]
- OS + version: [e.g. Windows 10]
- _ML-Agents version_: (e.g. ML-Agents v0.8, or latest `develop` branch from source)
- _TensorFlow version_: (you can run `pip3 show tensorflow` to get this)
- _Torch version_: (you can run `pip3 show torch` to get this)
- _Environment_: (which example environment you used to reproduce the error)
**NOTE:** We are unable to help reproduce bugs with custom environments. Please attempt to reproduce your issue with one of the example environments, or provide a minimal patch to one of the environments needed to reproduce the issue.

4
.github/workflows/pytest.yml


python -m pip install --progress-bar=off -r test_requirements.txt -c ${{ matrix.pip_constraints }}
python -m pip install --progress-bar=off -e ./gym-unity -c ${{ matrix.pip_constraints }}
- name: Save python dependencies
run: pip freeze > pip_versions-${{ matrix.python-version }}.txt
run: |
pip freeze > pip_versions-${{ matrix.python-version }}.txt
cat pip_versions-${{ matrix.python-version }}.txt
- name: Run pytest
run: pytest --cov=ml-agents --cov=ml-agents-envs --cov=gym-unity --cov-report html --junitxml=junit/test-results-${{ matrix.python-version }}.xml -p no:warnings
- name: Upload pytest test results

11
.yamato/test_versions.metafile


# List of editor versions for standalone-build-test and its dependencies.
# csharp_backcompat_version is used in training-int-tests to determine the
# older package version to run the backwards compat tests against.
csharp_backcompat_version: 1.0.0
csharp_backcompat_version: 1.0.0
# Waiting on a barracuda fix, see https://jira.unity3d.com/browse/MLA-1464
# - version: 2020.2
csharp_backcompat_version: 1.0.0
- version: 2020.2
# 2020.2 moved the AssetImporters namespace
# but we didn't handle this until 1.2.0
csharp_backcompat_version: 1.2.0

2
.yamato/training-int-tests.yml


# If we make a breaking change to the communication protocol, these will need
# to be disabled until the next release.
- python -u -m ml-agents.tests.yamato.training_int_tests --python=0.16.0
- python -u -m ml-agents.tests.yamato.training_int_tests --csharp=1.0.0
- python -u -m ml-agents.tests.yamato.training_int_tests --csharp={{ editor.csharp_backcompat_version }}
dependencies:
- .yamato/standalone-build-test.yml#test_mac_standalone_{{ editor.version }}
triggers:

22
Project/Assets/ML-Agents/Examples/SharedAssets/Scripts/ModelOverrider.cs


var bp = m_Agent.GetComponent<BehaviorParameters>();
var behaviorName = bp.BehaviorName;
var nnModel = GetModelForBehaviorName(behaviorName);
NNModel nnModel = null;
try
{
nnModel = GetModelForBehaviorName(behaviorName);
}
catch (Exception e)
{
overrideError = $"Exception calling GetModelForBehaviorName: {e}";
}
overrideError =
$"Didn't find a model for behaviorName {behaviorName}. Make " +
$"sure the behaviorName is set correctly in the commandline " +
$"and that the model file exists";
if (string.IsNullOrEmpty(overrideError))
{
overrideError =
$"Didn't find a model for behaviorName {behaviorName}. Make " +
"sure the behaviorName is set correctly in the commandline " +
"and that the model file exists";
}
}
else
{

8
README.md


**The Unity Machine Learning Agents Toolkit** (ML-Agents) is an open-source
project that enables games and simulations to serve as environments for
training intelligent agents. Agents can be trained using reinforcement learning,
imitation learning, neuroevolution, or other machine learning methods through a
simple-to-use Python API. We also provide implementations (based on TensorFlow)
training intelligent agents. We provide implementations (based on PyTorch)
train intelligent agents for 2D, 3D and VR/AR games. These trained agents can be
train intelligent agents for 2D, 3D and VR/AR games. Researchers can also use the
provided simple-to-use Python API to train Agents using reinforcement learning,
imitation learning, neuroevolution, or any other methods. These trained agents can be
used for multiple purposes, including controlling NPC behavior (in a variety of
settings such as multi-agent and adversarial), automated testing of game builds
and evaluating different game design decisions pre-release. The ML-Agents

11
com.unity.ml-agents/CHANGELOG.md


### Major Changes
#### com.unity.ml-agents (C#)
#### ml-agents / ml-agents-envs / gym-unity (Python)
- PyTorch trainers are now the default. See the
[installation docs](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Installation.md) for
more information on installing PyTorch. For the time being, TensorFlow is still available;
you can use the TensorFlow backend by adding `--tensorflow` to the CLI, or
adding `framework: tensorflow` in the configuration YAML. (#4517)
- The Barracuda dependency was upgraded to 1.1.2 (#4571)
- The `action_probs` node is no longer listed as an output in TensorFlow models (#4613).
- `Agent.CollectObservations()` and `Agent.EndEpisode()` will now throw an exception
if they are called recursively (for example, if they call `Agent.EndEpisode()`).
Previously, this would result in an infinite loop and cause the editor to hang. (#4573)
- Fixed an issue where runs could not be resumed when using TensorFlow and Ghost Training. (#4593)
## [1.5.0-preview] - 2020-10-14

27
com.unity.ml-agents/Runtime/Academy.cs


// Flag used to keep track of the first time the Academy is reset.
bool m_HadFirstReset;
// Whether the Academy is in the middle of a step. This is used to detect and Academy
// step called by user code that is also called by the Academy.
bool m_IsStepping;
// Detect an Academy step called by user code that is also called by the Academy.
private RecursionChecker m_StepRecursionChecker = new RecursionChecker("EnvironmentStep");
// Random seed used for inference.
int m_InferenceSeed;

/// </summary>
public void EnvironmentStep()
{
// Check whether we're already in the middle of a step.
// This shouldn't happen generally, but could happen if user code (e.g. CollectObservations)
// that is called by EnvironmentStep() also calls EnvironmentStep(). This would result
// in an infinite loop and/or stack overflow, so stop it before it happens.
if (m_IsStepping)
{
throw new UnityAgentsException(
"Academy.EnvironmentStep() called recursively. " +
"This might happen if you call EnvironmentStep() from custom code such as " +
"CollectObservations() or OnActionReceived()."
);
}
m_IsStepping = true;
try
using (m_StepRecursionChecker.Start())
{
if (!m_HadFirstReset)
{

{
AgentAct?.Invoke();
}
}
finally
{
// Reset m_IsStepping when we're done (or if an exception occurred).
m_IsStepping = false;
}
}

24
com.unity.ml-agents/Runtime/Agent.cs


/// </summary>
internal VectorSensor collectObservationsSensor;
private RecursionChecker m_CollectObservationsChecker = new RecursionChecker("CollectObservations");
private RecursionChecker m_OnEpisodeBeginChecker = new RecursionChecker("OnEpisodeBegin");
/// <summary>
/// List of IActuators that this Agent will delegate actions to if any exist.
/// </summary>

// episode when initializing until after the Academy had its first reset.
if (Academy.Instance.TotalStepCount != 0)
{
OnEpisodeBegin();
using (m_OnEpisodeBeginChecker.Start())
{
OnEpisodeBegin();
}
}
}

{
// Make sure the latest observations are being passed to training.
collectObservationsSensor.Reset();
CollectObservations(collectObservationsSensor);
using (m_CollectObservationsChecker.Start())
{
CollectObservations(collectObservationsSensor);
}
}
// Request the last decision with no callbacks
// We request a decision so Python knows the Agent is done immediately

UpdateSensors();
using (TimerStack.Instance.Scoped("CollectObservations"))
{
CollectObservations(collectObservationsSensor);
using (m_CollectObservationsChecker.Start())
{
CollectObservations(collectObservationsSensor);
}
}
using (TimerStack.Instance.Scoped("CollectDiscreteActionMasks"))
{

{
ResetData();
m_StepCount = 0;
OnEpisodeBegin();
using (m_OnEpisodeBeginChecker.Start())
{
OnEpisodeBegin();
}
}
/// <summary>

56
com.unity.ml-agents/Tests/Editor/MLAgentsEditModeTest.cs


}
}
}
[TestFixture]
public class AgentRecursionTests
{
[SetUp]
public void SetUp()
{
if (Academy.IsInitialized)
{
Academy.Instance.Dispose();
}
}
class CollectObsEndEpisodeAgent : Agent
{
public override void CollectObservations(VectorSensor sensor)
{
// NEVER DO THIS IN REAL CODE!
EndEpisode();
}
}
class OnEpisodeBeginEndEpisodeAgent : Agent
{
public override void OnEpisodeBegin()
{
// NEVER DO THIS IN REAL CODE!
EndEpisode();
}
}
void TestRecursiveThrows<T>() where T : Agent
{
var gameObj = new GameObject();
var agent = gameObj.AddComponent<T>();
agent.LazyInitialize();
agent.RequestDecision();
Assert.Throws<UnityAgentsException>(() =>
{
Academy.Instance.EnvironmentStep();
});
}
[Test]
public void TestRecursiveCollectObsEndEpisodeThrows()
{
TestRecursiveThrows<CollectObsEndEpisodeAgent>();
}
[Test]
public void TestRecursiveOnEpisodeBeginEndEpisodeThrows()
{
TestRecursiveThrows<OnEpisodeBeginEndEpisodeAgent>();
}
}
}

2
com.unity.ml-agents/package.json


"unity": "2018.4",
"description": "Use state-of-the-art machine learning to create intelligent character behaviors in any Unity environment (games, robotics, film, etc.).",
"dependencies": {
"com.unity.barracuda": "1.1.1-preview",
"com.unity.barracuda": "1.1.2-preview",
"com.unity.modules.imageconversion": "1.0.0",
"com.unity.modules.jsonserialize": "1.0.0",
"com.unity.modules.physics": "1.0.0",

2
docs/Background-Machine-Learning.md


one where the number of observations an agent perceives and the number of
actions they can take are large). Many of the algorithms we provide in ML-Agents
use some form of deep learning, built on top of the open-source library,
[TensorFlow](Background-TensorFlow.md).
[PyTorch](Background-PyTorch.md).

10
docs/Getting-Started.md


## Running a pre-trained model
We include pre-trained models for our agents (`.nn` files) and we use the
We include pre-trained models for our agents (`.onnx` files) and we use the
[Unity Inference Engine](Unity-Inference-Engine.md) to run these models inside
Unity. In this section, we will use the pre-trained model for the 3D Ball
example.

## Training a new model with Reinforcement Learning
While we provide pre-trained `.nn` files for the agents in this environment, any
While we provide pre-trained models for the agents in this environment, any
environment you make yourself will require training agents from scratch to
generate a new model file. In this section we will demonstrate how to use the
reinforcement learning algorithms that are part of the ML-Agents Python package

use it with compatible Agents (the Agents that generated the model). **Note:**
Do not just close the Unity Window once the `Saved Model` message appears.
Either wait for the training process to close the window or press `Ctrl+C` at
the command-line prompt. If you close the window manually, the `.nn` file
the command-line prompt. If you close the window manually, the `.onnx` file
containing the trained model is not exported into the ml-agents folder.
If you've quit the training early using `Ctrl+C` and want to resume training,

mlagents-learn config/ppo/3DBall.yaml --run-id=first3DBallRun --resume
```
Your trained model will be at `results/<run-identifier>/<behavior_name>.nn` where
Your trained model will be at `results/<run-identifier>/<behavior_name>.onnx` where
`<behavior_name>` is the name of the `Behavior Name` of the agents corresponding
to the model. This file corresponds to your model's latest checkpoint. You can
now embed this trained model into your Agents by following the steps below,

`Project/Assets/ML-Agents/Examples/3DBall/TFModels/`.
1. Open the Unity Editor, and select the **3DBall** scene as described above.
1. Select the **3DBall** prefab Agent object.
1. Drag the `<behavior_name>.nn` file from the Project window of the Editor to
1. Drag the `<behavior_name>.onnx` file from the Project window of the Editor to
the **Model** placeholder in the **Ball3DAgent** inspector window.
1. Press the **Play** button at the top of the Editor.

24
docs/Installation.md


[instructions](https://packaging.python.org/guides/installing-using-linux-tools/#installing-pip-setuptools-wheel-with-linux-package-managers)
on installing it.
Although we do not provide support for Anaconda installation on Windows, the
previous
[Windows Anaconda Installation (Deprecated) guide](Installation-Anaconda-Windows.md)
is still available.
### Clone the ML-Agents Toolkit Repository (Optional)
Now that you have installed Unity and Python, you can now install the Unity and

dependencies for each project and are supported on Mac / Windows / Linux. We
offer a dedicated [guide on Virtual Environments](Using-Virtual-Environment.md).
#### (Windows) Installing PyTorch
On Windows, you'll have to install the PyTorch package separately prior to
installing ML-Agents. Activate your virtual environment and run from the command line:
```sh
pip3 install torch==1.7.0 -f https://download.pytorch.org/whl/torch_stable.html
```
Note that on Windows, you may also need Microsoft's
[Visual C++ Redistributable](https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads)
if you don't have it already. See the [PyTorch installation guide](https://pytorch.org/get-started/locally/)
for more installation options and versions.
#### Installing `mlagents`
To install the `mlagents` Python package, activate your virtual environment and
run from the command line:

By installing the `mlagents` package, the dependencies listed in the
[setup.py file](../ml-agents/setup.py) are also installed. These include
[TensorFlow](Background-TensorFlow.md) (Requires a CPU w/ AVX support).
[PyTorch](Background-PyTorch.md) (Requires a CPU w/ AVX support).
#### Advanced: Local Installation for Development

the repository's root directory, run:
```sh
pip3 install torch -f https://download.pytorch.org/whl/torch_stable.html
pip3 install -e ./ml-agents-envs
pip3 install -e ./ml-agents
```

4
docs/Learning-Environment-Executable.md


```
You can press Ctrl+C to stop the training, and your trained model will be at
`results/<run-identifier>/<behavior_name>.nn`, which corresponds to your model's
`results/<run-identifier>/<behavior_name>.onnx`, which corresponds to your model's
latest checkpoint. (**Note:** There is a known bug on Windows that causes the
saving of the model to fail when you early terminate the training, it's
recommended to wait until Step has reached the max_steps parameter you set in

`Project/Assets/ML-Agents/Examples/3DBall/TFModels/`.
1. Open the Unity Editor, and select the **3DBall** scene as described above.
1. Select the **3DBall** prefab from the Project window and select **Agent**.
1. Drag the `<behavior_name>.nn` file from the Project window of the Editor to
1. Drag the `<behavior_name>.onnx` file from the Project window of the Editor to
the **Model** placeholder in the **Ball3DAgent** inspector window.
1. Press the **Play** button at the top of the Editor.

8
docs/ML-Agents-Overview.md


for training intelligent agents. Agents can be trained using reinforcement
learning, imitation learning, neuroevolution, or other machine learning methods
through a simple-to-use Python API. We also provide implementations (based on
TensorFlow) of state-of-the-art algorithms to enable game developers and
PyTorch) of state-of-the-art algorithms to enable game developers and
hobbyists to easily train intelligent agents for 2D, 3D and VR/AR games. These
trained agents can be used for multiple purposes, including controlling NPC
behavior (in a variety of settings such as multi-agent and adversarial),

that include overviews and helpful resources on the
[Unity Engine](Background-Unity.md),
[machine learning](Background-Machine-Learning.md) and
[TensorFlow](Background-TensorFlow.md). We **strongly** recommend browsing the
[PyTorch](Background-PyTorch.md). We **strongly** recommend browsing the
machine learning concepts or have not previously heard of TensorFlow.
machine learning concepts or have not previously heard of PyTorch.
The remainder of this page contains a deep dive into ML-Agents, its key
components, different training modes and scenarios. By the end of it, you should

### Custom Training and Inference
In the previous mode, the Agents were used for training to generate a TensorFlow
In the previous mode, the Agents were used for training to generate a PyTorch
model that the Agents can later use. However, any user of the ML-Agents Toolkit
can leverage their own algorithms for training. In this case, the behaviors of
all the Agents in the scene will be controlled within Python. You can even turn

2
docs/Readme.md


- [ML-Agents Toolkit Overview](ML-Agents-Overview.md)
- [Background: Unity](Background-Unity.md)
- [Background: Machine Learning](Background-Machine-Learning.md)
- [Background: TensorFlow](Background-TensorFlow.md)
- [Background: PyTorch](Background-PyTorch.md)
- [Example Environments](Learning-Environment-Examples.md)
## Creating Learning Environments

2
docs/Training-Configuration-File.md


| `time_horizon` | (default = `64`) How many steps of experience to collect per-agent before adding it to the experience buffer. When this limit is reached before the end of an episode, a value estimate is used to predict the overall expected reward from the agent's current state. As such, this parameter trades off between a less biased, but higher variance estimate (long time horizon) and more biased, but less varied estimate (short time horizon). In cases where there are frequent rewards within an episode, or episodes are prohibitively large, a smaller number can be more ideal. This number should be large enough to capture all the important behavior within a sequence of an agent's actions. <br><br> Typical range: `32` - `2048` |
| `max_steps` | (default = `500000`) Total number of steps (i.e., observation collected and action taken) that must be taken in the environment (or across all environments if using multiple in parallel) before ending the training process. If you have multiple agents with the same behavior name within your environment, all steps taken by those agents will contribute to the same `max_steps` count. <br><br>Typical range: `5e5` - `1e7` |
| `keep_checkpoints` | (default = `5`) The maximum number of model checkpoints to keep. Checkpoints are saved after the number of steps specified by the checkpoint_interval option. Once the maximum number of checkpoints has been reached, the oldest checkpoint is deleted when saving a new checkpoint. |
| `checkpoint_interval` | (default = `500000`) The number of experiences collected between each checkpoint by the trainer. A maximum of `keep_checkpoints` checkpoints are saved before old ones are deleted. Each checkpoint saves the `.nn` (and `.onnx` if applicable) files in `results/` folder.|
| `checkpoint_interval` | (default = `500000`) The number of experiences collected between each checkpoint by the trainer. A maximum of `keep_checkpoints` checkpoints are saved before old ones are deleted. Each checkpoint saves the `.onnx` (and `.nn` if using TensorFlow) files in `results/` folder.|
| `init_path` | (default = None) Initialize trainer from a previously saved model. Note that the prior run should have used the same trainer configurations as the current run, and have been saved with the same version of ML-Agents. <br><br>You should provide the full path to the folder where the checkpoints were saved, e.g. `./models/{run-id}/{behavior_name}`. This option is provided in case you want to initialize different behaviors from different runs; in most cases, it is sufficient to use the `--initialize-from` CLI parameter to initialize all models from the same run. |
| `threaded` | (default = `true`) By default, model updates can happen while the environment is being stepped. This violates the [on-policy](https://spinningup.openai.com/en/latest/user/algorithms.html#the-on-policy-algorithms) assumption of PPO slightly in exchange for a training speedup. To maintain the strict on-policyness of PPO, you can disable parallel updates by setting `threaded` to `false`. There is usually no reason to turn `threaded` off for SAC. |
| `hyperparameters -> learning_rate` | (default = `3e-4`) Initial learning rate for gradient descent. Corresponds to the strength of each gradient descent update step. This should typically be decreased if training is unstable, and the reward does not consistently increase. <br><br>Typical range: `1e-5` - `1e-3` |

35
docs/Training-ML-Agents.md


- [Curriculum Learning](#curriculum)
- [Training with a Curriculum](#training-with-a-curriculum)
- [Training Using Concurrent Unity Instances](#training-using-concurrent-unity-instances)
- [Using PyTorch (Experimental)](#using-pytorch-experimental)
For a broad overview of reinforcement learning, imitation learning and all the
training scenarios, methods and options within the ML-Agents Toolkit, see

values. See [Using TensorBoard](Using-Tensorboard.md) for more details on how
to visualize the training metrics.
1. Models: these contain the model checkpoints that
are updated throughout training and the final model file (`.nn`). This final
are updated throughout training and the final model file (`.onnx`). This final
model file is generated once either when training completes or is
interrupted.
1. Timers file (under `results/<run-identifier>/run_logs`): this contains aggregated

- **Result Variation Using Concurrent Unity Instances** - If you keep all the
hyperparameters the same, but change `--num-envs=<n>`, the results and model
would likely change.
### Using PyTorch (Experimental)
ML-Agents, by default, uses TensorFlow as its backend, but experimental support
for PyTorch has been added. To use PyTorch, the `torch` Python package must
be installed, and PyTorch must be enabled for your trainer.
#### Installing PyTorch
If you've already installed ML-Agents, follow the
[official PyTorch install instructions](https://pytorch.org/get-started/locally/) for
your platform and configuration. Note that on Windows, you may also need Microsoft's
[Visual C++ Redistributable](https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads) if you don't have it already.
If you're installing or upgrading ML-Agents on Linux or Mac, you can also run
`pip3 install mlagents[torch]` instead of `pip3 install mlagents`
during [installation](Installation.md). On Windows, install ML-Agents first and then
separately install PyTorch.
#### Enabling PyTorch
PyTorch can be enabled in one of two ways. First, by adding `--torch` to the
`mlagents-learn` command. This will make all behaviors train with PyTorch.
Second, by changing the `framework` option for your agent behavior in the
configuration YAML as below. This will use PyTorch just for that behavior.
```yaml
behaviors:
YourAgentBehavior:
framework: pytorch
```

2
docs/Training-on-Amazon-Web-Service.md


# Download and install the latest Nvidia driver for ubuntu
# Please refer to http://download.nvidia.com/XFree86/Linux-#x86_64/latest.txt
$ wget http://download.nvidia.com/XFree86/Linux-x86_64/390.87/NVIDIA-Linux-x86_64-390.87.run
$ sudo /bin/bash ./NVIDIA-Linux-x86_64-390.67.run --accept-license --no-questions --ui=none
$ sudo /bin/bash ./NVIDIA-Linux-x86_64-390.87.run --accept-license --no-questions --ui=none
# Disable Nouveau as it will clash with the Nvidia driver
$ sudo echo 'blacklist nouveau' | sudo tee -a /etc/modprobe.d/blacklist.conf

5
docs/Unity-Inference-Engine.md


[industry-standard open format](https://onnx.ai/about.html) produced by the
[tf2onnx package](https://github.com/onnx/tensorflow-onnx).
Export to ONNX is currently considered beta. To enable it, make sure
`tf2onnx>=1.5.5` is installed in pip. tf2onnx does not currently support
tensorflow 2.0.0 or later, or earlier than 1.12.0.
Export to ONNX is used if using PyTorch (the default). To enable it
while using TensorFlow, make sure `tf2onnx>=1.6.1` is installed in pip.
## Using the Unity Inference Engine

21
gym-unity/gym_unity/envs/__init__.py


self._previous_decision_step = decision_steps
# Set action spaces
if self.group_spec.is_action_discrete():
branches = self.group_spec.discrete_action_branches
if self.group_spec.action_size == 1:
if self.group_spec.action_spec.is_discrete():
self.action_size = self.group_spec.action_spec.discrete_size
branches = self.group_spec.action_spec.discrete_branches
if self.group_spec.action_spec.discrete_size == 1:
self._action_space = spaces.Discrete(branches[0])
else:
if flatten_branched:

self._action_space = spaces.MultiDiscrete(branches)
else:
elif self.group_spec.action_spec.is_continuous():
high = np.array([1] * self.group_spec.action_shape)
self.action_size = self.group_spec.action_spec.continuous_size
high = np.array([1] * self.group_spec.action_spec.continuous_size)
else:
raise UnityGymException(
"The gym wrapper does not provide explicit support for both discrete "
"and continuous actions."
)
# Set observations space
list_spaces: List[gym.Space] = []

# Translate action into list
action = self._flattener.lookup_action(action)
spec = self.group_spec
action = np.array(action).reshape((1, spec.action_size))
action = np.array(action).reshape((1, self.action_size))
self._env.set_actions(self.name, action)
self._env.step()

8
gym-unity/gym_unity/tests/test_gym.py


from gym_unity.envs import UnityToGymWrapper
from mlagents_envs.base_env import (
BehaviorSpec,
ActionType,
ActionSpec,
DecisionSteps,
TerminalSteps,
BehaviorMapping,

Creates a mock BrainParameters object with parameters.
"""
# Avoid using mutable object as default param
act_type = ActionType.DISCRETE
act_type = ActionType.CONTINUOUS
action_spec = ActionSpec.create_continuous(vector_action_space_size)
action_spec = ActionSpec.create_discrete(vector_action_space_size)
return BehaviorSpec(obs_shapes, act_type, vector_action_space_size)
return BehaviorSpec(obs_shapes, action_spec)
def create_mock_vector_steps(specs, num_agents=1, number_visual_observations=0):

192
ml-agents-envs/mlagents_envs/base_env.py


NamedTuple,
Tuple,
Optional,
Union,
Dict,
Iterator,
Any,

from enum import Enum
from mlagents_envs.exception import UnityActionException
AgentId = int
BehaviorName = str

)
class ActionType(Enum):
DISCRETE = 0
CONTINUOUS = 1
HYBRID = 2
class ActionBuffers(NamedTuple):
"""
A NamedTuple whose fields correspond to actions of different types.
Continuous and discrete actions are numpy arrays.
"""
continuous: np.ndarray # dims (n_agents, cont_size)
discrete: np.ndarray # dims (n_agents, disc_size)
num_continuous_actions: int
discrete_branch_sizes: Tuple[int]
"""
A NamedTuple containing utility functions and information about the action spaces
for a group of Agents under the same behavior.
- num_continuous_actions is an int corresponding to the number of floats which
constitute the action.
- discrete_branch_sizes is a Tuple of int where each int corresponds to
the number of discrete actions available to the agent on an independent action branch.
"""
continuous_size: int
discrete_branches: Tuple[int, ...]
def __eq__(self, other):
return (
self.continuous_size == other.continuous_size
and self.discrete_branches == other.discrete_branches
)
def __str__(self):
return f"Continuous: {self.continuous_size}, Discrete: {self.discrete_branches}"
def is_action_discrete(self) -> bool:
def is_discrete(self) -> bool:
return self.discrete_action_size > 0
return self.discrete_size > 0 and self.continuous_size == 0
def is_action_continuous(self) -> bool:
def is_continuous(self) -> bool:
return self.continuous_action_size > 0
return self.discrete_size == 0 and self.continuous_size > 0
def discrete_action_branches(self) -> Optional[Tuple[int, ...]]:
return self.discrete_branch_sizes # type: ignore
def discrete_size(self) -> int:
"""
Returns a an int corresponding to the number of discrete branches.
"""
return len(self.discrete_branches)
@property
def discrete_action_size(self) -> int:
return len(self.discrete_branch_sizes)
def empty_action(self, n_agents: int) -> ActionBuffers:
"""
Generates ActionBuffers corresponding to an empty action (all zeros)
for a number of agents.
:param n_agents: The number of agents that will have actions generated
"""
continuous: np.ndarray = None
discrete: np.ndarray = None
if self.continuous_size > 0:
continuous = np.zeros((n_agents, self.continuous_size), dtype=np.float32)
@property
def continuous_action_size(self) -> int:
return self.num_continuous_actions
if self.discrete_size > 0:
discrete = np.zeros((n_agents, self.discrete_size), dtype=np.int32)
return ActionBuffers(continuous, discrete)
@property
def action_size(self) -> int:
return self.discrete_action_size + self.continuous_action_size
def random_action(self, n_agents: int) -> ActionBuffers:
"""
Generates ActionBuffers corresponding to a random action (either discrete
or continuous) for a number of agents.
:param n_agents: The number of agents that will have actions generated
"""
continuous: np.ndarray = None
discrete: np.ndarray = None
if self.continuous_size > 0:
continuous = np.random.uniform(
low=-1.0, high=1.0, size=(n_agents, self.continuous_size)
).astype(np.float32)
def create_empty_action(self, n_agents: int) -> Tuple[np.ndarray, np.ndarray]:
return ActionBuffer(
np.zeros((n_agents, self.continuous_action_size), dtype=np.float32),
np.zeros((n_agents, self.discrete_action_size), dtype=np.int32),
)
if self.discrete_size > 0:
discrete = np.column_stack(
[
np.random.randint(
0,
self.discrete_branches[i], # type: ignore
size=(n_agents),
dtype=np.int32,
)
for i in range(self.discrete_size)
]
)
return ActionBuffers(continuous, discrete)
def create_random_action(self, n_agents: int) -> np.ndarray:
continuous_action = np.random.uniform(
low=-1.0, high=1.0, size=(n_agents, self.continuous_action_size)
).astype(np.float32)
def _validate_action(
self, actions: ActionBuffers, n_agents: int, name: str
) -> ActionBuffers:
"""
Validates that action has the correct action dim
for the correct number of agents and ensures the type.
"""
_expected_shape = (n_agents, self.continuous_size)
if self.continuous_size > 0 and actions.continuous.shape != _expected_shape:
raise UnityActionException(
f"The behavior {name} needs a continuous input of dimension "
f"{_expected_shape} for (<number of agents>, <action size>) but "
f"received input of dimension {actions.continuous.shape}"
)
if actions.continuous.dtype != np.float32:
actions.continuous = actions.continuous.astype(np.float32)
branch_size = self.discrete_action_branches
discrete_action = np.column_stack(
[
np.random.randint(
0,
branch_size[i], # type: ignore
size=(n_agents),
dtype=np.int32,
)
for i in range(self.discrete_action_size)
]
)
return ActionBuffer(continuous_action, discrete_action)
_expected_shape = (n_agents, self.discrete_size)
if self.discrete_size > 0 and actions.discrete.shape != _expected_shape:
raise UnityActionException(
f"The behavior {name} needs a discrete input of dimension "
f"{_expected_shape} for (<number of agents>, <action size>) but "
f"received input of dimension {actions.discrete.shape}"
)
if actions.discrete.dtype != np.int32:
actions.discrete = actions.discrete.astype(np.int32)
return actions
@staticmethod
def create_continuous(continuous_size: int) -> "ActionSpec":
"""
Creates an ActionSpec that is homogenously continuous
"""
return ActionSpec(continuous_size, ())
@staticmethod
def create_discrete(discrete_branches: Tuple[int]) -> "ActionSpec":
"""
Creates an ActionSpec that is homogenously discrete
"""
return ActionSpec(0, discrete_branches)
"""
A NamedTuple containing information about the observation and action
spaces for a group of Agents under the same behavior.
- observation_shapes is a List of Tuples of int : Each Tuple corresponds
to an observation's dimensions. The shape tuples have the same ordering as
the ordering of the DecisionSteps and TerminalSteps.
- action_spec is an ActionSpec NamedTuple
"""
class BehaviorMapping(Mapping):
def __init__(self, specs: Dict[BehaviorName, BehaviorSpec]):
self._dict = specs

"""
@abstractmethod
def set_actions(
self, behavior_name: BehaviorName, action: Union[ActionBuffer, np.ndarray]
) -> None:
def set_actions(self, behavior_name: BehaviorName, action: ActionBuffers) -> None:
:param action: A two dimensional np.ndarray corresponding to the action
(either int or float)
:param action: ActionBuffers tuple of continuous and/or discrete action
self,
behavior_name: BehaviorName,
agent_id: AgentId,
action: Union[ActionBuffer, np.ndarray],
self, behavior_name: BehaviorName, agent_id: AgentId, action: ActionBuffers
) -> None:
"""
Sets the action for one of the agents in the simulation for the next

:param action: A one dimensional np.ndarray corresponding to the action
(either int or float)
:param action: ActionBuffers tuple of continuous and/or discrete action
"""
@abstractmethod

51
ml-agents-envs/mlagents_envs/environment.py


DecisionSteps,
TerminalSteps,
BehaviorSpec,
ActionBuffers,
BehaviorName,
AgentId,
BehaviorMapping,

self._env_state: Dict[str, Tuple[DecisionSteps, TerminalSteps]] = {}
self._env_specs: Dict[str, BehaviorSpec] = {}
self._env_actions: Dict[str, np.ndarray] = {}
self._env_actions: Dict[str, ActionBuffers] = {}
self._is_first_message = True
self._update_behavior_specs(aca_output)

n_agents = len(self._env_state[group_name][0])
self._env_actions[group_name] = self._env_specs[
group_name
].create_empty_action(n_agents)
].action_spec.empty_action(n_agents)
step_input = self._generate_step_input(self._env_actions)
with hierarchical_timer("communicator.exchange"):
outputs = self._communicator.exchange(step_input)

f"agent group in the environment"
)
def set_actions(self, behavior_name: BehaviorName, action: np.ndarray) -> None:
def set_actions(self, behavior_name: BehaviorName, action: ActionBuffers) -> None:
spec = self._env_specs[behavior_name]
expected_type = np.float32 if spec.is_action_continuous() else np.int32
expected_shape = (len(self._env_state[behavior_name][0]), spec.action_size)
if action.shape != expected_shape:
raise UnityActionException(
f"The behavior {behavior_name} needs an input of dimension "
f"{expected_shape} for (<number of agents>, <action size>) but "
f"received input of dimension {action.shape}"
)
if action.dtype != expected_type:
action = action.astype(expected_type)
action_spec = self._env_specs[behavior_name].action_spec
num_agents = len(self._env_state[behavior_name][0])
action = action_spec._validate_action(action, num_agents, behavior_name)
self, behavior_name: BehaviorName, agent_id: AgentId, action: np.ndarray
self, behavior_name: BehaviorName, agent_id: AgentId, action: ActionBuffers
spec = self._env_specs[behavior_name]
expected_shape = (spec.action_size,)
if action.shape != expected_shape:
raise UnityActionException(
f"The Agent {agent_id} with BehaviorName {behavior_name} needs "
f"an input of dimension {expected_shape} but received input of "
f"dimension {action.shape}"
)
expected_type = np.float32 if spec.is_action_continuous() else np.int32
if action.dtype != expected_type:
action = action.astype(expected_type)
action_spec = self._env_specs[behavior_name].action_spec
num_agents = len(self._env_state[behavior_name][0])
action = action_spec._validate_action(action, num_agents, behavior_name)
self._env_actions[behavior_name] = spec.create_empty_action(
len(self._env_state[behavior_name][0])
)
self._env_actions[behavior_name] = action_spec.empty_action(num_agents)
try:
index = np.where(self._env_state[behavior_name][0].agent_id == agent_id)[0][
0

@timed
def _generate_step_input(
self, vector_action: Dict[str, np.ndarray]
self, vector_action: Dict[str, ActionBuffers]
) -> UnityInputProto:
rl_in = UnityRLInputProto()
for b in vector_action:

for i in range(n_agents):
action = AgentActionProto(vector_actions=vector_action[b][i])
# TODO: extend to AgentBuffers
if vector_action[b].continuous is not None:
_act = vector_action[b].continuous[i]
else:
_act = vector_action[b].discrete[i]
action = AgentActionProto(vector_actions=_act)
rl_in.agent_actions[b].value.extend([action])
rl_in.command = STEP
rl_in.side_channel = bytes(

18
ml-agents-envs/mlagents_envs/rpc_utils.py


from mlagents_envs.communicator_objects.brain_parameters_pb2 import BrainParametersProto
import numpy as np
import io
from typing import cast, List, Tuple, Union, Collection, Optional, Iterable
from typing import cast, List, Tuple, Collection, Optional, Iterable
from PIL import Image

:return: BehaviorSpec object.
"""
observation_shape = [tuple(obs.shape) for obs in agent_info.observations]
action_spec = brain_param_proto.action_spec
action_spec = ActionSpec(action_spec.num_continuous_actions,
tuple(branch for branch in action_spec.discrete_branch_sizes)
)
if brain_param_proto.vector_action_space_type == 1:
action_spec = ActionSpec(brain_param_proto.vector_action_size[0], ())
else:
action_spec = ActionSpec(0, tuple(brain_param_proto.vector_action_size))
return BehaviorSpec(observation_shape, action_spec)

[agent_info.id for agent_info in terminal_agent_info_list], dtype=np.int32
)
action_mask = None
if behavior_spec.is_action_discrete():
if behavior_spec.action_spec.discrete_size > 0:
a_size = np.sum(behavior_spec.discrete_action_branches)
a_size = np.sum(behavior_spec.action_spec.discrete_branches)
mask_matrix = np.ones((n_agents, a_size), dtype=np.bool)
for agent_index, agent_info in enumerate(decision_agent_info_list):
if agent_info.action_mask is not None:

for k in range(a_size)
]
action_mask = (1 - mask_matrix).astype(np.bool)
indices = _generate_split_indices(behavior_spec.discrete_action_branches)
indices = _generate_split_indices(
behavior_spec.action_spec.discrete_branches
)
action_mask = np.split(action_mask, indices, axis=1)
return (
DecisionSteps(

18
ml-agents-envs/mlagents_envs/tests/test_envs.py


from unittest import mock
import pytest
import numpy as np
from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.base_env import DecisionSteps, TerminalSteps
from mlagents_envs.exception import UnityEnvironmentException, UnityActionException

env.step()
decision_steps, terminal_steps = env.get_steps("RealFakeBrain")
n_agents = len(decision_steps)
env.set_actions(
"RealFakeBrain", np.zeros((n_agents, spec.action_size), dtype=np.float32)
)
env.set_actions("RealFakeBrain", spec.action_spec.empty_action(n_agents))
env.set_actions(
"RealFakeBrain",
np.zeros((n_agents - 1, spec.action_size), dtype=np.float32),
)
decision_steps, terminal_steps = env.get_steps("RealFakeBrain")
n_agents = len(decision_steps)
env.set_actions(
"RealFakeBrain", -1 * np.ones((n_agents, spec.action_size), dtype=np.float32)
)
env.step()
env.set_actions("RealFakeBrain", spec.action_spec.empty_action(n_agents - 1))
env.close()
assert isinstance(decision_steps, DecisionSteps)
assert isinstance(terminal_steps, TerminalSteps)

30
ml-agents-envs/mlagents_envs/tests/test_rpc_utils.py


from mlagents_envs.communicator_objects.agent_action_pb2 import AgentActionProto
from mlagents_envs.base_env import (
BehaviorSpec,
ActionType,
ActionSpec,
DecisionSteps,
TerminalSteps,
)

def test_batched_step_result_from_proto():
n_agents = 10
shapes = [(3,), (4,)]
spec = BehaviorSpec(shapes, ActionType.CONTINUOUS, 3)
spec = BehaviorSpec(shapes, ActionSpec.create_continuous(3))
ap_list = generate_list_agent_proto(n_agents, shapes)
decision_steps, terminal_steps = steps_from_proto(ap_list, spec)
for agent_id in range(n_agents):

def test_action_masking_discrete():
n_agents = 10
shapes = [(3,), (4,)]
behavior_spec = BehaviorSpec(shapes, ActionType.DISCRETE, (7, 3))
behavior_spec = BehaviorSpec(shapes, ActionSpec.create_discrete((7, 3)))
ap_list = generate_list_agent_proto(n_agents, shapes)
decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec)
masks = decision_steps.action_mask

def test_action_masking_discrete_1():
n_agents = 10
shapes = [(3,), (4,)]
behavior_spec = BehaviorSpec(shapes, ActionType.DISCRETE, (10,))
behavior_spec = BehaviorSpec(shapes, ActionSpec.create_discrete((10,)))
ap_list = generate_list_agent_proto(n_agents, shapes)
decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec)
masks = decision_steps.action_mask

def test_action_masking_discrete_2():
n_agents = 10
shapes = [(3,), (4,)]
behavior_spec = BehaviorSpec(shapes, ActionType.DISCRETE, (2, 2, 6))
behavior_spec = BehaviorSpec(shapes, ActionSpec.create_discrete((2, 2, 6)))
ap_list = generate_list_agent_proto(n_agents, shapes)
decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec)
masks = decision_steps.action_mask

def test_action_masking_continuous():
n_agents = 10
shapes = [(3,), (4,)]
behavior_spec = BehaviorSpec(shapes, ActionType.CONTINUOUS, 10)
behavior_spec = BehaviorSpec(shapes, ActionSpec.create_continuous(10))
ap_list = generate_list_agent_proto(n_agents, shapes)
decision_steps, terminal_steps = steps_from_proto(ap_list, behavior_spec)
masks = decision_steps.action_mask

bp.vector_action_size.extend([5, 4])
bp.vector_action_space_type = 0
behavior_spec = behavior_spec_from_proto(bp, agent_proto)
assert behavior_spec.is_action_discrete()
assert not behavior_spec.is_action_continuous()
assert behavior_spec.action_spec.is_discrete()
assert not behavior_spec.action_spec.is_continuous()
assert behavior_spec.discrete_action_branches == (5, 4)
assert behavior_spec.action_size == 2
assert behavior_spec.action_spec.discrete_branches == (5, 4)
assert behavior_spec.action_spec.discrete_size == 2
assert not behavior_spec.is_action_discrete()
assert behavior_spec.is_action_continuous()
assert behavior_spec.action_size == 6
assert not behavior_spec.action_spec.is_discrete()
assert behavior_spec.action_spec.is_continuous()
assert behavior_spec.action_spec.continuous_size == 6
behavior_spec = BehaviorSpec(shapes, ActionType.CONTINUOUS, 3)
behavior_spec = BehaviorSpec(shapes, ActionSpec.create_continuous(3))
ap_list = generate_list_agent_proto(n_agents, shapes, infinite_rewards=True)
with pytest.raises(RuntimeError):
steps_from_proto(ap_list, behavior_spec)

n_agents = 10
shapes = [(3,), (4,)]
behavior_spec = BehaviorSpec(shapes, ActionType.CONTINUOUS, 3)
behavior_spec = BehaviorSpec(shapes, ActionSpec.create_continuous(3))
ap_list = generate_list_agent_proto(n_agents, shapes, nan_observations=True)
with pytest.raises(RuntimeError):
steps_from_proto(ap_list, behavior_spec)

69
ml-agents-envs/mlagents_envs/tests/test_steps.py


from mlagents_envs.base_env import (
DecisionSteps,
TerminalSteps,
ActionType,
ActionSpec,
BehaviorSpec,
)

def test_empty_decision_steps():
specs = BehaviorSpec(
observation_shapes=[(3, 2), (5,)],
action_type=ActionType.CONTINUOUS,
action_shape=3,
observation_shapes=[(3, 2), (5,)], action_spec=ActionSpec.create_continuous(3)
)
ds = DecisionSteps.empty(specs)
assert len(ds.obs) == 2

def test_empty_terminal_steps():
specs = BehaviorSpec(
observation_shapes=[(3, 2), (5,)],
action_type=ActionType.CONTINUOUS,
action_shape=3,
observation_shapes=[(3, 2), (5,)], action_spec=ActionSpec.create_continuous(3)
)
ts = TerminalSteps.empty(specs)
assert len(ts.obs) == 2

def test_specs():
specs = BehaviorSpec(
observation_shapes=[(3, 2), (5,)],
action_type=ActionType.CONTINUOUS,
action_shape=3,
)
assert specs.discrete_action_branches is None
assert specs.action_size == 3
assert specs.create_empty_action(5).shape == (5, 3)
assert specs.create_empty_action(5).dtype == np.float32
specs = ActionSpec.create_continuous(3)
assert specs.discrete_branches == ()
assert specs.discrete_size == 0
assert specs.continuous_size == 3
assert specs.empty_action(5).continuous.shape == (5, 3)
assert specs.empty_action(5).continuous.dtype == np.float32
specs = ActionSpec.create_discrete((3,))
assert specs.discrete_branches == (3,)
assert specs.discrete_size == 1
assert specs.continuous_size == 0
assert specs.empty_action(5).discrete.shape == (5, 1)
assert specs.empty_action(5).discrete.dtype == np.int32
specs = BehaviorSpec(
observation_shapes=[(3, 2), (5,)],
action_type=ActionType.DISCRETE,
action_shape=(3,),
)
assert specs.discrete_action_branches == (3,)
assert specs.action_size == 1
assert specs.create_empty_action(5).shape == (5, 1)
assert specs.create_empty_action(5).dtype == np.int32
specs = ActionSpec(3, (3,))
assert specs.continuous_size == 3
assert specs.discrete_branches == (3,)
assert specs.discrete_size == 1
assert specs.empty_action(5).continuous.shape == (5, 3)
assert specs.empty_action(5).continuous.dtype == np.float32
assert specs.empty_action(5).discrete.shape == (5, 1)
assert specs.empty_action(5).discrete.dtype == np.int32
specs = BehaviorSpec(
observation_shapes=[(5,)],
action_type=ActionType.CONTINUOUS,
action_shape=action_len,
)
zero_action = specs.create_empty_action(4)
specs = ActionSpec.create_continuous(action_len)
zero_action = specs.empty_action(4).continuous
random_action = specs.create_random_action(4)
random_action = specs.random_action(4).continuous
assert random_action.dtype == np.float32
assert random_action.shape == (4, action_len)
assert np.min(random_action) >= -1

action_shape = (10, 20, 30)
specs = BehaviorSpec(
observation_shapes=[(5,)],
action_type=ActionType.DISCRETE,
action_shape=action_shape,
)
zero_action = specs.create_empty_action(4)
specs = ActionSpec.create_discrete(action_shape)
zero_action = specs.empty_action(4).discrete
random_action = specs.create_random_action(4)
random_action = specs.random_action(4).discrete
assert random_action.dtype == np.int32
assert random_action.shape == (4, len(action_shape))
assert np.min(random_action) >= 0

1
ml-agents/mlagents/tf_utils/__init__.py


from mlagents.tf_utils.tf import tf as tf # noqa
from mlagents.tf_utils.tf import set_warnings_enabled # noqa
from mlagents.tf_utils.tf import generate_session_config # noqa
from mlagents.tf_utils.tf import is_available # noqa

63
ml-agents/mlagents/tf_utils/tf.py


# This should be the only place that we import tensorflow directly.
# Everywhere else is caught by the banned-modules setting for flake8
import tensorflow as tf # noqa I201
try:
import tensorflow as tf # noqa I201
# LooseVersion handles things "1.2.3a" or "4.5.6-rc7" fairly sensibly.
_is_tensorflow2 = LooseVersion(tf.__version__) >= LooseVersion("2.0.0")
# LooseVersion handles things "1.2.3a" or "4.5.6-rc7" fairly sensibly.
_is_tensorflow2 = LooseVersion(tf.__version__) >= LooseVersion("2.0.0")
if _is_tensorflow2:
import tensorflow.compat.v1 as tf
if _is_tensorflow2:
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
tf_logging = tf.logging
else:
try:
# Newer versions of tf 1.x will complain that tf.logging is deprecated
tf_logging = tf.compat.v1.logging
except AttributeError:
# Fall back to the safe import, even if it might generate a warning or two.
tf.disable_v2_behavior()
else:
try:
# Newer versions of tf 1.x will complain that tf.logging is deprecated
tf_logging = tf.compat.v1.logging
except AttributeError:
# Fall back to the safe import, even if it might generate a warning or two.
tf_logging = tf.logging
except ImportError:
tf = None
def is_available():
"""
Returns whether Torch is available in this Python environment
"""
return tf is not None
def set_warnings_enabled(is_enabled: bool) -> None:

"""
level = tf_logging.WARN if is_enabled else tf_logging.ERROR
tf_logging.set_verbosity(level)
if is_available():
level = tf_logging.WARN if is_enabled else tf_logging.ERROR
tf_logging.set_verbosity(level)
def generate_session_config() -> tf.ConfigProto:
def generate_session_config() -> "tf.ConfigProto":
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
# For multi-GPU training, set allow_soft_placement to True to allow
# placing the operation into an alternative device automatically
# to prevent from exceptions if the device doesn't suppport the operation
# or the device does not exist
config.allow_soft_placement = True
return config
if is_available():
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
# For multi-GPU training, set allow_soft_placement to True to allow
# placing the operation into an alternative device automatically
# to prevent from exceptions if the device doesn't suppport the operation
# or the device does not exist
config.allow_soft_placement = True
return config
else:
return None

1
ml-agents/mlagents/torch_utils/__init__.py


from mlagents.torch_utils.torch import torch as torch # noqa
from mlagents.torch_utils.torch import nn # noqa
from mlagents.torch_utils.torch import is_available # noqa
from mlagents.torch_utils.torch import default_device # noqa

66
ml-agents/mlagents/torch_utils/torch.py


import os
from distutils.version import LooseVersion
import pkg_resources
# Detect availability of torch package here.
# NOTE: this try/except is temporary until torch is required for ML-Agents.
try:
# This should be the only place that we import torch directly.
# Everywhere else is caught by the banned-modules setting for flake8
import