| `trainer` | The type of training to perform: `ppo` or `sac` |
| `init_path` | Initialize trainer from a previously saved model. Note that the prior run should have used the same trainer configurations as the current run, and have been saved with the same version of ML-Agents. <br><br>You should provide the full path to the folder where the checkpoints were saved, e.g. `./models/{run-id}/{behavior_name}`. This option is provided in case you want to initialize different behaviors from different runs; in most cases, it is sufficient to use the `--initialize-from` CLI parameter to initialize all models from the same run. |
| `trainer` | The type of trainer to use: `ppo` or `sac` |
| `batch_size` | Number of experiences in each iteration of gradient descent. **This should always be a fraction of the `buffer_size`**. If you are using a continuous action space, this value should be large (in the order of 1000s). If you are using a discrete action space, this value should be smaller (in order of 10s). <br><br> Typical range: (Continuous - PPO): `512` - `5120`; (Continuous - SAC): `128` - `1024`; (Discrete, PPO & SAC): `32` - `512`. |
| `buffer_size` | Number of experiences to collect before updating the policy model. Corresponds to how many experiences should be collected before we do any learning or updating of the model. **This should be a multiple of `batch_size`**. Typically a larger `buffer_size` corresponds to more stable training updates. In SAC, the max size of the experience buffer - on the order of thousands of times longer than your episodes, so that SAC can learn from old as well as new experiences. <br><br>Typical range: PPO: `2048` - `409600`; SAC: `50000` - `1000000` |
| `batch_size` | Number of experiences in each iteration of gradient descent. **This should always be multiple times smaller than `buffer_size`**. If you are using a continuous action space, this value should be large (in the order of 1000s). If you are using a discrete action space, this value should be smaller (in order of 10s). <br><br> Typical range: (Continuous - PPO): `512` - `5120`; (Continuous - SAC): `128` - `1024`; (Discrete, PPO & SAC): `32` - `512`. |
| `buffer_size` | Number of experiences to collect before updating the policy model. Corresponds to how many experiences should be collected before we do any learning or updating of the model. **This should be multiple times larger than `batch_size`**. Typically a larger `buffer_size` corresponds to more stable training updates. In SAC, the max size of the experience buffer - on the order of thousands of times longer than your episodes, so that SAC can learn from old as well as new experiences. <br><br>Typical range: PPO: `2048` - `409600`; SAC: `50000` - `1000000` |
| `learning_rate_schedule` | Determines how learning rate changes over time. For PPO, we recommend decaying learning rate until max_steps so learning converges more stably. However, for some cases (e.g. training for an unknown amount of time) this feature can be disabled. For SAC, we recommend holding learning rate constant so that the agent can continue to learn until its Q function converges naturally. <br><br>`linear` (default) decays the learning_rate linearly, reaching 0 at max_steps, while `constant` keeps the learning rate constant for the entire training run. |
| `learning_rate_schedule` | (Optional, default = `linear` for PPO and `constant` for SAC) Determines how learning rate changes over time. For PPO, we recommend decaying learning rate until max_steps so learning converges more stably. However, for some cases (e.g. training for an unknown amount of time) this feature can be disabled. For SAC, we recommend holding learning rate constant so that the agent can continue to learn until its Q function converges naturally. <br><br>`linear` decays the learning_rate linearly, reaching 0 at max_steps, while `constant` keeps the learning rate constant for the entire training run. |
| `vis_encoder_type` | Encoder type for encoding visual observations. <br><br>`simple` (default) uses a simple encoder which consists of two convolutional layers, `nature_cnn` uses the CNN implementation proposed by [Mnih et al.](https://www.nature.com/articles/nature14236), consisting of three convolutional layers, and `resnet` uses the [IMPALA Resnet](https://arxiv.org/abs/1802.01561) consisting of three stacked layers, each with two residual blocks, making a much larger network than the other two. |
| `vis_encoder_type` | (Optional, default = `simple`) Encoder type for encoding visual observations. <br><br>`simple` (default) uses a simple encoder which consists of two convolutional layers, `nature_cnn` uses the CNN implementation proposed by [Mnih et al.](https://www.nature.com/articles/nature14236), consisting of three convolutional layers, and `resnet` uses the [IMPALA Resnet](https://arxiv.org/abs/1802.01561) consisting of three stacked layers, each with two residual blocks, making a much larger network than the other two. |
| `init_path` | (Optional, default = None) Initialize trainer from a previously saved model. Note that the prior run should have used the same trainer configurations as the current run, and have been saved with the same version of ML-Agents. <br><br>You should provide the full path to the folder where the checkpoints were saved, e.g. `./models/{run-id}/{behavior_name}`. This option is provided in case you want to initialize different behaviors from different runs; in most cases, it is sufficient to use the `--initialize-from` CLI parameter to initialize all models from the same run. |
| `threaded` | (Optional, default = `true`) By default, model updates can happen while the environment is being stepped. This violates the [on-policy](https://spinningup.openai.com/en/latest/user/algorithms.html#the-on-policy-algorithms) assumption of PPO slightly in exchange for a training speedup. To maintain the strict on-policyness of PPO, you can disable parallel updates by setting `threaded` to `false`. There is usually no reason to turn `threaded` off for SAC. |
## Trainer-specific Configurations
| `epsilon` | Influences how rapidly the policy can evolve during training. Corresponds to the acceptable threshold of divergence between the old and new policies during gradient descent updating. Setting this value small will result in more stable updates, but will also slow the training process. <br><br>Typical range: `0.1` - `0.3` |
| `lambd` | Regularization parameter (lambda) used when calculating the Generalized Advantage Estimate ([GAE](https://arxiv.org/abs/1506.02438)). This can be thought of as how much the agent relies on its current value estimate when calculating an updated value estimate. Low values correspond to relying more on the current value estimate (which can be high bias), and high values correspond to relying more on the actual rewards received in the environment (which can be high variance). The parameter provides a trade-off between the two, and the right value can lead to a more stable training process. <br><br>Typical range: `0.9` - `0.95` |
| `num_epoch` | Number of passes to make through the experience buffer when performing gradient descent optimization.The larger the batch_size, the larger it is acceptable to make this. Decreasing this will ensure more stable updates, at the cost of slower learning. <br><br>Typical range: `3` - `10` |
| `threaded` | (Optional, default = `true`) By default, PPO model updates can happen while the environment is being stepped. This violates the [on-policy](https://spinningup.openai.com/en/latest/user/algorithms.html#the-on-policy-algorithms) assumption of PPO slightly in exchange for a 10-20% training speedup. To maintain the strict on-policyness of PPO, you can disable parallel updates by setting `threaded` to `false`. |
### SAC-specific Configurations
| `save_replay_buffer` | (Optional, default = `false`) Whether to save and load the experience replay buffer as well as the model when quitting and re-starting training. This may help resumes go more smoothly, as the experiences collected won't be wiped. Note that replay buffers can be very large, and will take up a considerable amount of disk space. For that reason, we disable this feature by default. |
| `tau` | How aggressively to update the target network used for bootstrapping value estimation in SAC. Corresponds to the magnitude of the target Q update during the SAC model update. In SAC, there are two neural networks: the target and the policy. The target network is used to bootstrap the policy's estimate of the future rewards at a given state, and is fixed while the policy is being updated. This target is then slowly updated according to tau. Typically, this value should be left at 0.005. For simple problems, increasing tau to 0.01 might reduce the time it takes to learn, at the cost of stability. <br><br>Typical range: `0.005` - `0.01` |
| `steps_per_update` | Average ratio of agent steps (actions) taken to updates made of the agent's policy. In SAC, a single "update" corresponds to grabbing a batch of size `batch_size` from the experience replay buffer, and using this mini batch to update the models. Note that it is not guaranteed that after exactly `steps_per_update` steps an update will be made, only that the ratio will hold true over many steps. Typically, `steps_per_update` should be greater than or equal to 1. Note that setting `steps_per_update` lower will improve sample efficiency (reduce the number of steps required to train) but increase the CPU time spent performing updates. For most environments where steps are fairly fast (e.g. our example environments) `steps_per_update` equal to the number of agents in the scene is a good balance. For slow environments (steps take 0.1 seconds or more) reducing `steps_per_update` may improve training speed. We can also change `steps_per_update` to lower than 1 to update more often than once per step, though this will usually result in a slowdown unless the environment is very slow. <br><br>Typical range: `1` - `20` |
| `train_interval` | Number of steps taken between each agent training event. Typically, we can train after every step, but if your environment's steps are very small and very frequent, there may not be any new interesting information between steps, and `train_interval` can be increased. <br><br>Typical range: `1` - `5` |
| `extrinsic > strength` | Factor by which to multiply the reward given by the environment. Typical ranges will vary depending on the reward signal. <br><br>Typical range: `1.00` |
| `extrinsic > gamma` | Discount factor for future rewards coming from the environment. This can be thought of as how far into the future the agent should care about possible rewards. In situations when the agent should be acting in the present in order to prepare for rewards in the distant future, this value should be large. In cases when rewards are more immediate, it can be smaller. Must be strictly smaller than 1. <br><br>Typical range: `0.8` - `0.995` |
| `extrinsic -> strength` | Factor by which to multiply the reward given by the environment. Typical ranges will vary depending on the reward signal. <br><br>Typical range: `1.00` |
| `extrinsic -> gamma` | Discount factor for future rewards coming from the environment. This can be thought of as how far into the future the agent should care about possible rewards. In situations when the agent should be acting in the present in order to prepare for rewards in the distant future, this value should be large. In cases when rewards are more immediate, it can be smaller. Must be strictly smaller than 1. <br><br>Typical range: `0.8` - `0.995` |
| `curiosity > strength` | Magnitude of the curiosity reward generated by the intrinsic curiosity module. This should be scaled in order to ensure it is large enough to not be overwhelmed by extrinsic reward signals in the environment. Likewise it should not be too large to overwhelm the extrinsic reward signal. <br><br>Typical range: `0.001` - `0.1` |
| `curiosity > encoding_size` | (Optional, default = `64`) Size of the encoding used by the intrinsic curiosity model. This value should be small enough to encourage the ICM to compress the original observation, but also not too small to prevent it from learning to differentiate between expected and actual observations. <br><br>Typical range: `64` - `256` |
| `curiosity > learning_rate` | (Optional, default = `3e-4`) Learning rate used to update the intrinsic curiosity module. This should typically be decreased if training is unstable, and the curiosity loss is unstable. <br><br>Typical range: `1e-5` - `1e-3` |
| `curiosity -> strength` | Magnitude of the curiosity reward generated by the intrinsic curiosity module. This should be scaled in order to ensure it is large enough to not be overwhelmed by extrinsic reward signals in the environment. Likewise it should not be too large to overwhelm the extrinsic reward signal. <br><br>Typical range: `0.001` - `0.1` |
| `curiosity -> encoding_size` | (Optional, default = `64`) Size of the encoding used by the intrinsic curiosity model. This value should be small enough to encourage the ICM to compress the original observation, but also not too small to prevent it from learning to differentiate between expected and actual observations. <br><br>Typical range: `64` - `256` |
| `curiosity -> learning_rate` | (Optional, default = `3e-4`) Learning rate used to update the intrinsic curiosity module. This should typically be decreased if training is unstable, and the curiosity loss is unstable. <br><br>Typical range: `1e-5` - `1e-3` |
| `gail > strength` | Factor by which to multiply the raw reward. Note that when using GAIL with an Extrinsic Signal, this value should be set lower if your demonstrations are suboptimal (e.g. from a human), so that a trained agent will focus on receiving extrinsic rewards instead of exactly copying the demonstrations. Keep the strength below about 0.1 in those cases. <br><br>Typical range: `0.01` - `1.0` |
| `gail > demo_path` | The path to your .demo file or directory of .demo files. |
| `gail > encoding_size` | (Optional, default = `64`) Size of the hidden layer used by the discriminator. This value should be small enough to encourage the discriminator to compress the original observation, but also not too small to prevent it from learning to differentiate between demonstrated and actual behavior. Dramatically increasing this size will also negatively affect training times. <br><br>Typical range: `64` - `256` |
| `gail > learning_rate` | (Optional, default = `3e-4`) Learning rate used to update the discriminator. This should typically be decreased if training is unstable, and the GAIL loss is unstable. <br><br>Typical range: `1e-5` - `1e-3` |
| `gail > use_actions` | (Optional, default = `false`) Determines whether the discriminator should discriminate based on both observations and actions, or just observations. Set to True if you want the agent to mimic the actions from the demonstrations, and False if you'd rather have the agent visit the same states as in the demonstrations but with possibly different actions. Setting to False is more likely to be stable, especially with imperfect demonstrations, but may learn slower. |
| `gail > use_vail` | (Optional, default = `false`) Enables a variational bottleneck within the GAIL discriminator. This forces the discriminator to learn a more general representation and reduces its tendency to be "too good" at discriminating, making learning more stable. However, it does increase training time. Enable this if you notice your imitation learning is unstable, or unable to learn the task at hand. |
| `gail -> strength` | Factor by which to multiply the raw reward. Note that when using GAIL with an Extrinsic Signal, this value should be set lower if your demonstrations are suboptimal (e.g. from a human), so that a trained agent will focus on receiving extrinsic rewards instead of exactly copying the demonstrations. Keep the strength below about 0.1 in those cases. <br><br>Typical range: `0.01` - `1.0` |
| `gail -> demo_path` | The path to your .demo file or directory of .demo files. |
| `gail -> encoding_size` | (Optional, default = `64`) Size of the hidden layer used by the discriminator. This value should be small enough to encourage the discriminator to compress the original observation, but also not too small to prevent it from learning to differentiate between demonstrated and actual behavior. Dramatically increasing this size will also negatively affect training times. <br><br>Typical range: `64` - `256` |
| `gail -> learning_rate` | (Optional, default = `3e-4`) Learning rate used to update the discriminator. This should typically be decreased if training is unstable, and the GAIL loss is unstable. <br><br>Typical range: `1e-5` - `1e-3` |
| `gail -> use_actions` | (Optional, default = `false`) Determines whether the discriminator should discriminate based on both observations and actions, or just observations. Set to True if you want the agent to mimic the actions from the demonstrations, and False if you'd rather have the agent visit the same states as in the demonstrations but with possibly different actions. Setting to False is more likely to be stable, especially with imperfect demonstrations, but may learn slower. |
| `gail -> use_vail` | (Optional, default = `false`) Enables a variational bottleneck within the GAIL discriminator. This forces the discriminator to learn a more general representation and reduces its tendency to be "too good" at discriminating, making learning more stable. However, it does increase training time. Enable this if you notice your imitation learning is unstable, or unable to learn the task at hand. |
### SAC-specific Reward Signal
### Reward Signal Settings for SAC
SAC. There is one configuration for reward signals that only applies to SAC.
SAC. There is one configuration for all reward signals that only applies to SAC.
| `reward_signals > reward_signal_num_update` | (Optional, default = `steps_per_update`) Number of steps per mini batch sampled and used for updating the reward signals. By default, we update the reward signals once every time the main policy is updated. However, to imitate the training procedure in certain imitation learning papers (e.g. [Kostrikov et. al](http://arxiv.org/abs/1809.02925), [Blondé et. al](http://arxiv.org/abs/1809.02064)), we may want to update the reward signal (GAIL) M times for every update of the policy. We can change `steps_per_update` of SAC to N, as well as `reward_signal_steps_per_update` under `reward_signals` to N / M to accomplish this. By default, `reward_signal_steps_per_update` is set to `steps_per_update`. |
| `reward_signals -> reward_signal_num_update` | (Optional, default = `steps_per_update`) Number of steps per mini batch sampled and used for updating the reward signals. By default, we update the reward signals once every time the main policy is updated. However, to imitate the training procedure in certain imitation learning papers (e.g. [Kostrikov et. al](http://arxiv.org/abs/1809.02925), [Blondé et. al](http://arxiv.org/abs/1809.02064)), we may want to update the reward signal (GAIL) M times for every update of the policy. We can change `steps_per_update` of SAC to N, as well as `reward_signal_steps_per_update` under `reward_signals` to N / M to accomplish this. By default, `reward_signal_steps_per_update` is set to `steps_per_update`. |