浏览代码

Move check for creation into nn_policy

/develop/nopreviousactions
Ervin Teng 5 年前
当前提交
328476d8
共有 4 个文件被更改,包括 8 次插入11 次删除
  1. 6
      ml-agents/mlagents/trainers/common/nn_policy.py
  2. 9
      ml-agents/mlagents/trainers/optimizer.py
  3. 2
      ml-agents/mlagents/trainers/ppo/optimizer.py
  4. 2
      ml-agents/mlagents/trainers/sac/optimizer.py

6
ml-agents/mlagents/trainers/common/nn_policy.py


Builds the tensorflow graph needed for this policy.
"""
with self.graph.as_default():
_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
if len(_vars) > 0:
# We assume the first thing created in the graph is the Policy. If
# already populated, don't create more tensors.
return
self.create_input_placeholders()
if self.use_continuous_act:
self.create_cc_actor(

9
ml-agents/mlagents/trainers/optimizer.py


def create_tf_optimizer(self, learning_rate, name="Adam"):
return tf.train.AdamOptimizer(learning_rate=learning_rate, name=name)
def _create_policy_tf_graph_if_needed(self, policy):
"""
Creates the policy TF graph. If already created, don't do anything.
"""
with policy.graph.as_default():
_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
if len(_vars) == 0:
policy.create_tf_graph()
def _execute_model(self, feed_dict, out_dict):
"""
Executes model.

2
ml-agents/mlagents/trainers/ppo/optimizer.py


:param trainer_params: Trainer parameters dictionary that specifies the properties of the trainer.
"""
# Create the graph here to give more granular control of the TF graph to the Optimizer.
self._create_policy_tf_graph_if_needed(policy)
policy.create_tf_graph()
with policy.graph.as_default():
with tf.variable_scope("optimizer/"):

2
ml-agents/mlagents/trainers/sac/optimizer.py


:param m_size: Size of brain memory.
"""
# Create the graph here to give more granular control of the TF graph to the Optimizer.
self._create_policy_tf_graph_if_needed(policy)
policy.create_tf_graph()
with policy.graph.as_default():
with tf.variable_scope(""):

正在加载...
取消
保存